written 5.7 years ago by |
Detemine factor Udl on laterally unsupported beam ISLB 300 of span 3.25m s.s at the ends
Given ISLB 300
D=300 bw=150 tf=9.4
tw=6.7 $\gamma_{1}$=15
Ze=488.9$\times 10^{3}$
Iz=7332.9$\times 10^{4}mm^{4}$
Iy=376.2$\times 10^{4}mm^{4}$
Zp=554.32$\times 10^{3}mm^{4}$-- Is code
span length =3250mm
d=300-2$\times9.4-2\times 15$=251.2
1) sectional classification
$\frac{b}{tf}=\frac{bf/2}{tf}=7.98 \lt$ 9.4 $\epsilon$
$\frac{d}{tw}=\frac{D-2tf-2R_{1}}{6.7}=\frac{251.2}{6.7}=37.49\lt 84 \epsilon$
section is plastic
Required factor Udl=w kN/m
md=Bd$\ast$ Zp$\ast $fdb
1) IT=$\sum \frac{blti^{3}}{3}$
=2[$\frac{150\times 9.4^{3}}{3}]+[\frac{hf \times t^{3}}{3}] $hf= D-1 thick flange
=2[$\frac{150\times 9.4^{3}}{3}]+[\frac{29.06+6.7^{3}}{3}]$=300-9.4=290.6
It=112.19$\times10^{3}$
Iw=(1-Bf)Bf$\ast Iy \ast hr^{2}$
=(1-0.5)0.5$\ast$376.2$\times$10$^{4}\ast $290.6$^{2}$
Iw=7.94$\times 10^{10}$
Eg=2g(1+u)
2$\times10^{5}$=2g(1+0.3) $\mu$=0.3
G=76.92$\times 10^{3}$ mpa
LLT=3250mm eff length=3250mm
mcr=$\sqrt{\frac{\pi^{2}\times(2\times10^{5}\times376.2\times10^{4})}{(3250)^{2}}[76.92\times 10^{3}\times112.19\times10^{3}+\frac{\pi^{2}\times2\times10^{5}\times7.94\times10^{10}}{(3250)^{2}}}$
=$\sqrt{838.47+153192.47}$
mcr=128.45$\times10^{6}$N.mm
laterally buckling movement
$\lambda LT=\sqrt{Bb,Zp,fy/mcr}\leq \sqrt{1.2\ast Ze\ast fy/mcr}$
=$\sqrt{\frac{0.5\times(554.32\times10^{3})\times 250}{128.45\times10^{6}}} \leq \sqrt{\frac{1.2\ast 488.9\times10^{3}\times250}{128.45\times10^{6}}}$
$\lambda LT=1.038\leq 1.06$ safe
$\Phi=0.5[1+\alpha LT(\lambda LT-0.2)+\lambda LT^{2}]$
=0.5[1+0.21(1.038-0.2)+1.038$^{2}]$
=0.5[1+0.21(1.038-0.2)+1.038$^{2}$]
$\Phi_{Lt}$=1.126
X$_{LT}=\frac{1}{\{\Phi_{LT}+[\Phi_{LT^{2}-\lambda^{2}LT]^{0.5}}\}}\leq$1
=$\frac{1}{[1.126+[1.126^{2}-1.038^{2}]^{0.5}]}$
$x_{LT}$=0.64
fbd=$\frac{xLD\times fy}{\gamma mo}$
=$\frac{0.64\times 250}{1.1}$
fbd=145.46mpa
md=B.P .ZP. fbd
=1$\times554.32\times10^{3}\times145.46$
md=80.63$\times 10^{6}$
80.63$\times 10^{6}=\frac{w\times 3250 ^{2}}{8}$
w=61.07kN/m
alternative method
$\frac{kL}{\gamma min}=\frac{3250}{28 \ steel tale}$=116.19
kl/$\gamma \ min$ h/tf=31.9
110
116.19
120
$\frac{kl}{\gamma min} \frac{h}{tf}$=30 $ \ \ \ $ 31.91 $ \ \ \ \ $ 35
110 $ \ \ \ \ \ $ 232.1 $ \ \ \ \ $ x $ \ \ \ \ \ $ 219.3
120 $ \ \ \ \ \ $ 202.4 $ \ \ \ \ $ y $ \ \ \ \ \ $190.1
1) 30 $ \ \ \ \ $ 232.1
31.91 $ \ \ \ \ \ $ x
35 $ \ \ \ \ \ \ \ \ \ $ 219.3
x=227.236
30 $ \ \ \ \ \ \ \ \ \ $ 202.4
31.41 $ \ \ \ \ \ \ \ $ y
35 $ \ \ \ \ \ \ \ \ \ $ 190.1
y=197.26
110 $ \ \ \ \ \ \ \ \ \ $ 227.23
116.19 $ \ \ \ \ $ tcrb
120 $ \ \ \ \ \ \ \ \ \ $197.26
fcrb=208.68
fcrb $ \ \ \ \ \ \ \ \ \ $ fdb
200 $ \ \ \ \ \ \ \ \ $ 134.1
208.68 $ \ \ \ \ \ \ $ x
250$ \ \ \ \ \ \ \ \ \ \ \ $152.3
fbd=137.26
md=Bd$\times ZP\ast $ fdb
md=76.08$\times 10^{6}$