written 6.1 years ago by |
design internal beam b1 refer floor system
Given
Span of beam=8m
Live load=4kN/m2
Flour finish load=1.5kN/m2
Fy=250
fe=410
Required=design internal beam B1
LyLx=84=2≥2 one way slab
lylx≤2 two way slab
load on beam=slab load+wall load+Weight of beam
Concrete load=25(kNms)×(4m)×0.140m
=14kN/m
F.F.L=1.5×4=6kNm
L.L =4×4=16kN/m
slab load=concrete load+EFL+L.L
=14+6+16
=36kN/m
Assume weight of beam=1kN/m
weight of beam =1×4=1kNm
Total load no of beam=36+1=37kN.m
factored w=37×1.5
w=55.5kN/m
Step I factor shear and factor movement
V=wl2=55.5×82
V=22.2kN
m=wl28=55.5×828=444kN/M
Step II Trial section
Zpreq=M×γmafy
=444×106×1.1250
Zfreq=1953.6×103mm3
ISMB 500having Zp= 2074.67×103mm3
h=500.bf= 180mm,tf=17.2mm
tw=10.2mm, γ1=17mm
IZ=45218.3×104mm4
Ze=1808.7×103mm3
Step III check for section classification
ϵ=√250fy=1
btf=Df/2tf=180/217.2=5.23<9.4ϵ
dtw=D−2tf−2γ1tw=500−(2×17.2)×(2×17)10.2
=4.22< 84ϵ section is plastic
Step IV
Vd=Av×fy√3×γmo Av=500×10.2
=5100×250√3×1.1
Vd=669.20kN > V=222kN
Step V
0.6 Vd=0.6×66.920×103
V=222×103N <40152×103N (low shear
md=Bd×(Zp)×fyγmo
=1×(2074.67×103)×25011
md=471.52kNm>m=444kNm
≤1.2×ze×fyγmo safe
≤(1.2×1808.7×103)×2501.1
< 493.28kN safe
Step VI dtw+42.2<97ϵ no need to check shear buckling
Web crippling
Fwc=(b1+n2)∗tw∗fyγmo
n2=2.5(tf+γ1)
=2.5(17.2+17)
n2=85.5
fwc=(75+85.5)∗10.2∗2501.1
=372.67kN > 222kN safe
Deflection
∫permissible=span300=8000300=26.66mmm
∫act=5(55.5/1.5)×(8000)4384(2×105)∗45218.3×104 ∫ act=21.82mm
∫act(21.82)mm<Sper(26.66mm) safe