0
657views
Steel beam flanges are embeded in concrete is 8m long c/c spacing =4m it carry Rcc slab 140m thick L.L =kN/m2 F.F=1.5kN/m2 Take fy=250 fe=410
1 Answer
0
2views

design internal beam b1 refer floor system enter image description here

Given

Span of beam=8m

Live load=4kN/m2

Flour finish load=1.5kN/m2

Fy=250

fe=410

Required=design internal beam B1

LyLx=84=22 one way slab

lylx2 two way slab

load on beam=slab load+wall load+Weight of beam

Concrete load=25(kNms)×(4m)×0.140m

=14kN/m

F.F.L=1.5×4=6kNm

L.L =4×4=16kN/m

slab load=concrete load+EFL+L.L

=14+6+16

=36kN/m

Assume weight of beam=1kN/m

weight of beam =1×4=1kNm

Total load no of beam=36+1=37kN.m

factored w=37×1.5

w=55.5kN/m

Step I factor shear and factor movement

V=wl2=55.5×82

V=22.2kN

enter image description here

m=wl28=55.5×828=444kN/M

Step II Trial section

Zpreq=M×γmafy

=444×106×1.1250

Zfreq=1953.6×103mm3

ISMB 500having Zp= 2074.67×103mm3

h=500.bf= 180mm,tf=17.2mm

tw=10.2mm, γ1=17mm

IZ=45218.3×104mm4

Ze=1808.7×103mm3

Step III check for section classification

ϵ=250fy=1

btf=Df/2tf=180/217.2=5.23<9.4ϵ

dtw=D2tf2γ1tw=500(2×17.2)×(2×17)10.2

=4.22< 84ϵ section is plastic

Step IV

Vd=Av×fy3×γmo Av=500×10.2

=5100×2503×1.1

Vd=669.20kN > V=222kN

Step V

0.6 Vd=0.6×66.920×103

V=222×103N <40152×103N (low shear

md=Bd×(Zp)×fyγmo

=1×(2074.67×103)×25011

md=471.52kNm>m=444kNm

1.2×ze×fyγmo safe

(1.2×1808.7×103)×2501.1

< 493.28kN safe

Step VI dtw+42.2<97ϵ no need to check shear buckling

Web crippling

Fwc=(b1+n2)twfyγmo

n2=2.5(tf+γ1)

=2.5(17.2+17)

n2=85.5

fwc=(75+85.5)10.22501.1

=372.67kN > 222kN safe

Deflection

permissible=span300=8000300=26.66mmm

act=5(55.5/1.5)×(8000)4384(2×105)45218.3×104 act=21.82mm

act(21.82)mm<Sper(26.66mm) safe

Please log in to add an answer.