written 5.7 years ago by | modified 2.3 years ago by |
Given
w=40kN (Service load)
leff=40(of beam)
Required - Design laterally supported beam
factored load=40$\times$1.5=60kN
w=$\frac{60}{4(leff)}$=15kN/m
Step I determine max factor shear face (v) and Bm(m) for given loading and support condition
v=$\frac{wl}{2}=\frac{15\times4}{2}$=30kN
m=$\frac{wl^{2}}{8}=\frac{15\times4^{2}}{8}$=30kN.m
Step II Trial section
zpreq=$\frac{m.req}{fy}$
=$\frac{(30\times10^{6})\times1.1}{250}$
Zpreq=132$\times10^{3}mm^{3}$
ISMB175 zp=166.08$\times10^{3}mm^{3}$
h=175 bf=90mm tf=8.6
tw=5.5 r=10
IZ=12.75$\times10^{4}mm^{4}$
Ze=Zxx=145.4$\times 10^{3}mm^{3}$
Step III check section IS pg 18
$\frac{b}{tf}=\frac{bf/2}{tf}=\frac{90/2}{8.6}$=5.23
$\epsilon=\sqrt{\frac{250}{fy}}$=1
$\frac{b}{tf}$=5.23$\lt$9..4$\epsilon$
$\lt$9.4$\times$ 1
$\lt$ 9.4
$\frac{d}{tw}=\frac{D-2tf-2R_{1}}{tw}$=$\frac{137.5}{5.5}$=25
$\frac{d}{tw}=25\lt 84\epsilon$ secton is plastic
Step IV Design shear strenght Vd
Vd=$\frac{Vn}{\gamma mo}=\frac{Av\ast fy}{\sqrt{3}.\gamma mo}$
Av=hf$\ast$tw
=175$\ast$ 5.5=962.5
=$\frac{962.5\times 250}{\sqrt{3}\times1.1}$
Vd=126.30$\times 10^{3}$N Vd=126.30$\times10^{3}N\gt V=30\times 10^{3}$N
Analysis is sage
Step V Design bearing strength md
0.6Vd=75.78$\times$10$^{3}$N V$\lt$ 0.6Vd--low shear
md=$\frac{Bd\ast fy\ast Zp}{\gamma mo}$
Bb=1 plastic section
fy=250
zp=166.08$\times10^{3}mm^{3}$
md=$\frac{1\times250\times 166.08\times 10^{3}}{11}$
md=37.75kN.M
md$\lt\frac{1.2\times ze\times fy}{\gamma mo}$
$\lt 1.2\times 145.\times 4\times10^{3}\times \frac{250}{1.1}$
md$\leq$39.65kN.m
Analysis is safe
Step VI web buckling
fwb=(b1+n1)$\ast $tw$\ast $ fcd
b1=75 Assume
N1=$\frac{D}{2}=\frac{175}{2}$=87.5
fcd=$\frac{Kl}{\gamma min}=\frac{0.7\times d}{t/\sqrt{12}}$ d=D-2tf-2R$_{1}$=137.5
=$\frac{0.7\times137.5}{5.5/\sqrt{12}}$
$\frac{Kl}{\gamma min}=\lambda$=60.62
60$ \ \ \ \ \ $ 168
60.72 $ \ $ fcd
70 $ \ \ \ \ \ \\ $ 152
fcd=167
fwb=(75+87.5)$\ast$5.5$\ast$167--pg 67
fwb=149.256$\times10^{3}\gt$ V
2) $\frac{d}{tw}\lt$ 67.8
$\frac{137.5}{5.5}\lt$67
25$\lt$67
shear buckling check is not required
2) Web crippling
fwx=$\frac{[(b_{1}+n_{2})+tw]+fyw}{\gamma mo}$
N$_{2}$=2.5[tf+$\gamma_{1}$]
=2.5[8.6+10]
n$_{2}$=46.5
fwc=$\frac{(75\times46.5)\ast 5.5\ast250}{1.1}$
Fwc=151.88$\times10^{3}\gt V=30\times10^{3}$kN
3) Deflection
$\int act \lt \int$limit
$\int act=\frac{5 wl^{4}}{384EI}$
permissible =$\frac{span}{300}$
$\frac{4000}{300}$
$\frac{\frac{5}{384}\times(\frac{15}{1.5})\ast(1000)^{4}}{(2\times10^{5}\ast(1274\times10^{4})}$=13.33
=13.08
1308$\lt \int$ perm=13.33
Analysis is sage
Select ISMB 175 of beam section laterally supported through out