written 5.8 years ago by |
Velocity through the nozzle
The kinetic energy of the jet at an outlet of nozzle =$\dfrac 12mv^2$
Now the mass of liquid at the outlet of nozzle per second = $\rho av$
$\therefore $ Kinetic energy of the jet at the outlet per sec
$=\dfrac 12\rho av\times v^2$
$=\dfrac 12\rho av^3$
Therefore power in KW at the outlet of nozzle
$=(KE/sec)\times \dfrac 1{1000}$
$=\dfrac {\dfrac 12\rho av^3}{1000}$
Therefore efficiency of power transmission through nozzle
$\eta=\dfrac {\text{Power at outlet of nozzle}}{\text{Power at inlet of pipe}}$
$\eta=\dfrac {\dfrac {\dfrac 12\rho av^3}{1000}}{\dfrac {\rho g.Q.H}{1000}}$
$\eta=\dfrac {\dfrac 12\rho av^3}{\rho g.Q.H}$
$\eta=\dfrac {\dfrac 12\rho av^3}{\rho g.av.H}$ [$\because Q=av$]
$\eta=\dfrac {v^2}{2gh}\left[\dfrac 1{1+\dfrac {4fL}{D}\times \dfrac {a^2}{A^2}}\right]$
Condition for maximum power transmitted:-
We know that, the total head at inlet of pipe = Total head at the outlet of the nozzle + losses
$H=\dfrac {v^2}{2g}+hf$
$H=\dfrac {v^2}{2g}+\dfrac {4fLv^2}{D\times 2g}$
$\therefore \dfrac {v^2}{2g}=H-\dfrac {4.f.L.v^2}{D\times 2g}$
but power transmitted through nozzle
$=\dfrac {\dfrac 12\rho av^3}{1000}=\dfrac {\dfrac 12\rho av}{1000}\times v^2$
$=\dfrac {\dfrac 12\rho av}{1000}\left[2g\left(H-\dfrac {4.f.L.V^2}{D\times 2g}\right)\right]$
$=\dfrac {\rho gav}{1000}\left(H-\dfrac {4.f.L.V^2}{D\times 2g}\right)........................(1)$
Now from the continuity equation,
$AV=av$
$\therefore V=\dfrac {av}A$
Substituting the value of V in equation (1), we get
Power transmitted through nozzle
$=\dfrac {\rho gav}{1000}\left(H-\dfrac {4.f.L.a^2}{D\times 2g}.\dfrac {v^2}{A^2}\right)$
The power (P) will be maximum, when
$\dfrac {d(P)}{dV}=0$
$\dfrac d{dV}\left[\dfrac {\rho gav}{1000}\left(H-\dfrac {4.f.L.a^2}{D\times 2g}.\dfrac {v^2}{A^2}\right)\right]=0$
$\dfrac d{dV}\left[\dfrac {\rho ga}{1000}\left(HV-\dfrac {4.f.L.a^2}{D\times 2g}.\dfrac {V^3}{A^2}\right)\right]=0$
$\left[\dfrac {\rho ga}{1000}\left(H-3\dfrac {4.f.L.a^2}{D\times 2g}.\dfrac {V^2}{A^2}\right)\right]=0$
$\left(H-3\dfrac {4.f.L}{D\times 2g}.v^2\right)=0$ [$\because v=\dfrac {av}{A}$]
$H-3hf=0$ $\left(\because \dfrac {4.f.Lv^2}{D\times 2g}\right)=hf$
$hf=\dfrac H3$
This equation gives the condition for maximum power transmitted through nozzle
- Diameter of nozzle for maximum transmission of power through nozzle: -
For maximum transmission of power, the condition is given by,
$hf=\dfrac H3$
But, $hf=\dfrac{4fLV^2}{D\times 2g}$
$\therefore \dfrac{4fLV^2}{D\times 2g}=\dfrac H3$
$H=3\times \dfrac {4fLv^2}{D\times 2g}$
But H is also = total head at outlet of nozzle + losses
$H=\dfrac {v^2}{2g}+hf=\dfrac {V^2}{2g}+\dfrac {4fLv^2}{D\times 2g}$
Equating the two values of H, we get
$3\times \dfrac {4fLv^2}{D\times 2g}=\dfrac {V^2}{2g}+\dfrac {4fLv^2}{D\times 2g}$
$\dfrac {12fLv^2}{D\times 2g}-\dfrac {4fLv^2}{D\times 2g}=\dfrac {V^2}{2g}$
$\dfrac {8fLv^2}{D\times 2g}=\dfrac {V^2}{2g}........................(1)$
But from continuity,
$av=AV$
or $v=\dfrac {AV}a$
Substituting this value of v in equation (1), we get
$\dfrac {8fL}{D\times 2g}\times \dfrac {A^2V^2}{a^2}=\dfrac {V^2}{2g}$
$\dfrac {8fL}{D}\times \dfrac {A^2}{a^2}=1...................(2)$
$\dfrac {8fL}{D}\times \dfrac {\left(\dfrac \pi 4D^2\right)^2}{\left(\dfrac \pi 4d^2\right)^2}=1$
$\dfrac {8fL}{D}\times \dfrac {\left(D^4\right)}{\left(d^4\right)}=1$
$d^4=\dfrac {D^5}{8fL}$
$\therefore d=\left(\dfrac {D^5}{8fL}\right)^{\dfrac 14}$
From equation (2),
$\dfrac {8fL}D=\dfrac {A^2}{a^2}$
$\dfrac Aa=\sqrt{\dfrac {8fL}{D}}...........................(3)$
This equation given the ratio of the area of the supply pipe to area of the nozzle, hence from this equation, the diameter of the nozzle can be calculated.