length of angle supproting beam=bf
Gvine ISMB at 365.9N/m bf=125mm tf=12.5
tw=6.9 $\gamma $b=13
ISHB 200 at 365.N/m bf=200mm tf=9 tw=6.1
T=$110\times 10^{3}$n fy=250 assume fe 410
- length of angle supporting beam =bf =125mm
- b=$\frac{R}{tw\times \frac{fy}{ymo}}$=$\frac{110\times 10^{3}}{6.9\times\frac{250}{1.1}}$=70.14mm
b=70.15mm
provide clerance=3mm required length of outstanding leg angle =(b+ clearance+
=70.14+3=73.14 provide ISA 150$\times$75$\times$75$\times$12mm
- Bearing length of seat angle b1=b-(tf+yb)
=70.14-12.5-13b1=44.64mm
- length of seat angle subjected to Bm be b2=(b1+clerance)-(ta)-($\gamma$a)
=(44.64+3)-12-13b2=25.64mm
- Bm to seat angle sub to mu=$(\frac{R}{b1})\times b2\times(\frac{b2}{2})$
=$(\frac{10\times 10^{3}}{44.64})\times25.64\times(\frac{25.64}{2})$
mu=809.98N.mm
Now md =1.2$\times Z\times \frac{fy}{\gamma mo}$
=1.2$\times(\frac{bd^{2}}{2})\times(\frac{fu}{yo})$
=1.2$\times(\frac{125\times 12^{2}}{6})\times(\frac{250}{1.1})$
md=818.18$\times10^{8}$N.mm
md$\gt$mu Hence angle is saf
- Shear capacity of angel=bf$\times ta\times\frac{fu}{\sqrt{3}ymo}
=\frac{(125)\times 12 \times 250}{\sqrt{3}\times1.1}$=196.823$\times10^{3}$N
shear capacity $\gt$ given load Hence safe
- Shear strength of beam Vd=$\frac{Aw\times fyw}{\sqrt{3}\times ymo}$
=$\frac{(250\times 6.9)\times250}{\sqrt{3}\times 1.1}$=226.34$\times10^{3}\gt 110\times 10^{3}$ Hence safe
- Design of weld R=(LEff$\times E.TT)\times(\frac{fu}{\sqrt{3}\times ymw})$ max size of weld =tp-1.5
=1.2-1.5=101.5 minsize of weld =5mm for 12mm provide 8mm weld 52=8mm
E.T. T=0.7$\times$sq
=0.7$\times$8
E.T.T =5.6mm
(110$\times 110^{3})=(Leff\times 5.6)\times(\frac{410}{\sqrt{3}\times 125})$ Leff=150mm
- Provide clip angle at top 90$\times$90$\times$ 10