written 5.8 years ago by |
Given
ISMB 350 bf==140mm tw=8.1mm
ISHB 300 bf=250mm tf=10.6mm
fub=400mpa
fy=250mpa
fu=410mpa
Required stiffness seat angle connection
Step I
length of seat angle bf=140mm
bearing length of seat angle (b)=$\frac{R}{tw\times \frac{fy}{ymo}}$
=$\frac{320}{8.1\times\frac{250}{1.1}}$
b=173.8mm
provide clearance 10mm
Required length of outstandard leg
=173.83+10 =183$\approx$ 200mm
provide seat angle size 200$\times$150$\times$10
Step II
bearing area required for stiffner angle
ABr=$\frac{r}{fy/ymo}$
=$\frac{320\times 10^{3}}{250/1.1}$
=1408mm$^{2}$
Abr each angle=1408/2=704mm$^{2}$
provide 2ISA 90$\times$60$\times$8mm
length of outstanding leg of stiffness angle
$\neq14.6\times$ ta
$\neq14\times(\frac{250}{250})\times8$=112mm
90$\lt$112 Hence ok
Assume distance from on reaction from column fange
R=$\frac{200}{2}$=$\frac{outstanding \ leg \ of \ seat \ angle}{2}$
$(\frac{Vsb}{Vdb})^{2}+(\frac{Tb}{Tdb})^{2}\leq$1.0
shear capacity of bolt=$\frac{fub\times Anb.n}{\sqrt{3}\times1.25}$
Vdsb=65.22kN
bearing capacity of bolt=2$\times kb\times t\times d\times$fu
=2$\times$0.5$\times$8$\times$24$\times$410
Vdpb=80.29kN
least bolt value 65.22kN
No of bolts required per row=$\sqrt{\frac{6m}{n\times p\times bv}}$
=$\sqrt{\frac{6\times(320\times 10^{3}\times 200/2}{2\times 60\times 65.22}}$
=49.5
$\approx$ provide 5 bolts at each row
Dept of stiffen angle=2e+$\sum$p
=2$\times$45+(4$\times$60)
=350mm
Tensile force in critical bolt=$\frac{m.yn}{\sum y^{2}}$
NA=$\frac{h}{7}$
h=D-e\=350-45
=305mm
NA=305/7=43.57
y1=60mm
y2=120mm
y3=180mm
y4=240mm=yn
$\sum$ Fy=2[60+120+180+240]
$\sum$Fy=1200mm
$\sum Fy^{2}=2[60^{2}+120^{2}+280^{2}+240^{2}$]
$\sum Fy^{2}=21600mm^{2}$
m$^{'}$=$\frac{m}{1+\frac{2n}{21}\times\frac{\sum y}{\sum y^{2}}}$
=$\frac{(320\times10^{3})\times(200/2)}{1+(\frac{2\times305}{21}\times \frac{1200}{21600})}$
m${'}$=27.87$\times10^{6}$N.mm
m=$\frac{(27.87\times10^{6})\times 2240}{216000}$
m=30.97$\times 10^{3}$N
Tdb=$\frac{0.9\times fub\times Anb}{1.25}$
=$\frac{0.9\times 400\times 353}{1.25}$
Tdb=101.67kN
Vsb=$\frac{R}{No \ of \ bolts }$
=$\frac{320\times 10^{3}}{10}$=32kN
Vsb=32kN
Put in equation (1)
$(\frac{32\times 10^{3}}{65.22\times 10^{3}})^{2}+(\frac{30.97\times 10^{3}}{101.67\times 10^{3}})^{2}\lt$ 1
0.3$\lt$1.0
hence safe
Unstiffed seat angle connection(welded)
- length of angle supporting in beam=width of flang of beam (bf)
- bearing length required at the rout line of beam b=$\frac{R}{tw\times(\frac{fy}{yo})}$ required length of outstanding leg of angle =b+clearance (3 to 15mm)
- Bearing length on seat angle b1=b-(tf+$\gamma $b)
- length of seat angle subjected to Bm b1=(b1+clerance )-(ta)-(ra)
- B.M to be seat angle such to mu=(load on angle )$\times(\frac{b2}{2}) =(\frac{R}{b1})\times (b2)\times(\frac{b2}{2})$design moment (mo)md=(1.2)$\times$(2)\times$(\frac{fy}{\gamma mo})$ design moment $\gt$ ultimate moment md$\gt$mu Hence safe
- Shear capacity angle=bf$\times ta\times\frac{fu}{\sqrt{3}ymo}$ shera capacity $\gt$ given load then safe
- Shear strength of beam Vd=$\frac{Aw\times fyw}{\sqrt{3}\times ymo}\gt$given load
Design of wield
1 find p
2 max size of weld =tp-15 min size of weld
- strength of weld=$\frac{fu}{\sqrt{3}ymw}$
provide clip angle or cleat angle (80$\times60\times$6mm)at top with 3mm weld