0
2.8kviews
Design of Curved Beams
1 Answer
0
82views

Q.1 A crane having an approximate trapezoidal c/s is shown in fig. It is made of plain carbon steel 45C8 $(Syt=380 \ N/mm^2$) and the FOS is 3.5. Determine the load carrying capacity of hook.

enter image description here

  1. $\sigma_{max}$ =$\frac{Syt}{FOS}$ = $\frac{380}{3.5} = 108.57 \ N/mm^2$

  2. 2.

$\;$(I) PSG 6.3

$r_{n}$ = $\frac{(\frac{b_{i}+b_{o}}{2})\;h}{(\frac{b_{i}.r_{o}-b_{o}.r_{i}}{h})\;ln\;(\frac{r_{o}}{r_{i}})-(b_{i}-b_{o})}$

$\therefore r_{n}$ = $\frac{(\frac{90+30}{2})\;120}{(\frac{90 \times170-30 \times 50}{120})\;ln\;(\frac{170}{50})-(90-30)}$

$\therefore r_{n}$ = $\frac{7200}{(115 \times 1.22377)-60}$

$\therefore r_{n} = 89.1815 \ mm = \text{radius of neutral axis.}$

(II) $R = r_{i}$ + $\frac{h[b_i + 2b_o]}{3[b_i + b_o]}$ ......... PSG 6.3

$\therefore R = 50 + \frac{120[90 + 2\;\times\;30]}{3[90 + 30]}$

$\therefore R = 100 \ mm$ ... Radius of centroidal axis.

(III) $e = R - r_{n} = 100 - 89.1815$

$\therefore e = 10.8185 \ mm = eccentricity$


  1. (I) $h_i = r_{n} - r_{i} = 89.1815 - 50$

$\therefore h_i = 39.1815 \ mm$ ...Dist. of innermost fibre from N.A

(II) $A = (b_{i} + b_{o})\;\frac{h}{2}$...c/s area

$\therefore A = (90+30) \;\frac{120}{2}$

$\therefore A = 7200\ mm^2$

(III) $M_{b} = P.R = P(100) = 100\ P$.....Bending moment wrt centroidal axis.

(IV) Inside fibre, from PSG 6.2

$(\sigma_{b})_{i}$ = $\frac{M_{b} . h_i}{A.e.r_{i}}$ = $\frac{(100P)(39.1815)}{7200 \times 10.8185 \times 50}$

$\therefore$ $(\sigma_{b})_{i}$ = 1.006 $\times 10^{-3} P$

For symmetric section, maximum loading moment occurs at inside fibre,

$\therefore$ $(\sigma_{b})_{i}$ = $(\sigma_{b})_{max} = 1.006 \;\times\; 10^{-3} P$

(V) $\sigma_{t}$ = $\frac{P}{A}$ = $\frac{P}{7200}$ = 1.3888 $\;\times\; 10^{-4} P$....Direct tensile stress.

(VI) $(\sigma_{b})_{max}$ + $\sigma_{t}$ = $\sigma_{max}$

$\therefore (1.006 \;\times\;10^{-3} P) + (1.3888 \;\times\; 10^{-4} P)$ = 108.57

$\therefore P = 94.83 \;\times\;10^3 N = 94.83\ kN$.


Q.2 A curved link of the mechanism made from a round steel bar is shown in fig. The material of the link is plain carbon steel 30C8(Syt = 400 N/mm$^2$) and the factor of safety is 3.5. Determine the dimensions of the link.

enter image description here

  1. $\sigma_{max}$ = $\frac{Syt}{FOS}$ = $\frac{400}{3.5} = 114.285 \ N/mm^2$

  2. At section X-X,

R = 4D...given

(I) From PSG 6.3,

$r_{i} = R - 0.5D = 4D - 0.5D$

$\therefore r_{i} = 3.5D$

$r_{o} = R + 0.5D = 4D + 0.5D$

$\therefore r_{o} = 4.5D$

r$_{n}$ = $\frac{(\sqrt{r_{0}} + \sqrt{r_{i}})^2}{4}$

$\therefore$ r$_{n}$ = $\frac{(\sqrt{4.5D} + \sqrt{3.5D})^2}{4}$

$\therefore r_{n} = 3.9843D$

(II) $e = R - r_{n} = 4D - 3.9843D = 0.0157D$


  1. (I) $h_i = r_{n} - r_{i} = 3.9843D - 3.5D = 0.4843D$

(II) $A = \frac{\pi}{4}\;D^2 = 0.7854 D^2$

(III) $M_{b} = P . R = 1 \times 10^3 \times 4D = 4 \times 10^3D$

(IV) Inside fibre

$(\sigma_{b})_{i}$ = $\frac{M_{b} . hi}{A.e.r_{i}}$ = $\frac{4 \times 10^3 D \times 0.4843D}{0.7854D^2 \times 0.0157D \times 3.5D}$

$\therefore$ $(\sigma_{b})_{i}$ = $\frac{44.8865 \times 10^3}{D^2}$ = $(\sigma_{b})_{max}$

(V) $\sigma_{t}$ = $\frac{P}{A}$ = $\frac{1 \times 10^3}{0.7854D^2}$ = $\frac{1273.2365}{D^2}$

(VI) $(\sigma_{b})_{max}$ + $\sigma_{t}$ = $\sigma_{max}$

$\therefore$ $\frac{44.8865 \times 10^3}{D^2}$ + $\frac{1273.2365}{D^2} = 114.285$

$\therefore D = 20.0972 \ mm$

$D \approx 21 \ mm$


Q.3 The C frame of a $100\ KN$ capacity press is shown in fig. The material of the frame is grey cast iron FG 200 and factor of safety is 3. Determine dimensions of frame.

enter image description here

  1. $\sigma_{max}$ = $\frac{Syt}{FOS}$ = $\frac{200}{3} = 66.6667 N/mm^2$

    1. (I)

$\begin{aligned} r_{n} & = \frac{(b_{i} - t) t_{i} + t_{h}}{(b_{i} - t)\;ln\;\frac{r_{i} + t_{i}}{r_{i}} + t\;ln\frac{r_{o}}{r_{i}}} \\ \therefore r_{n} & = \frac{(3t - 0.75t) t + (0.75t)(3t)}{(3t - 0.75t)\;ln\;\frac{2t + t}{2t} + 0.75t\;ln(\frac{5t}{2t})} \\ & = \frac{t^2(3 - 0.75) + t^2(0.75\;\times\;3)}{t(3 - 0.75)\;ln\;(\frac{3}{2}) + t\;[0.75\;ln\;(\frac{5}{2})]} \\ & = \frac{t^2[(3 - 0.75)\;+\;(0.75\;\times\;3)]}{t[(3 - 0.75)\;ln\;(\frac{3}{2})\;+\;(0.75\;ln\;(\frac{5}{2}))]} \\ \therefore r_{n} & = 2.8134t. \end{aligned}$

(II)
$\begin{aligned} R & = r_{i} + [\frac{[\frac{h^2 t}{2} + \frac{t_{i}^2(b_{i} - t)}{2}]}{ht + (b_{i} - t)t_{i}}] \\ & = 2t + [\frac{[\frac{(3t)^2(0.75t)}{2} + \frac{t^2(3t - 0.75t)}{2}]}{(3t)(0.75t) + (3t - 0.75t)t}] \\ & = 2t + [\frac{[\frac{(t^3(9 \times 0.75)}{2} + \frac{t^3(3 - 0.75)}{2}]}{t^2(3 \times 0.75) + t^2(3 - 0.75)}] \\ & = 2t + 1t \\ R & = 3t. \\ \end{aligned}$

(III) $e = R - r_{n} = 3t - 2.8134t = 0.1866t$


  1. (I) $h_{i} = r_{n} - r_{i} = 2.8134t = 2t = 0.8134t$

(II) $A = (3t)(t) + (2t)(0.75t) = 4.5t^2$

(III) $M_{b} = P \times (1000 + R) = 100 \times 10^3 \times (1000 + 3t)$

(IV) $(\sigma_{b})_{i}$ = $\frac{M_{b} . hi}{A.e.r_{i}}$

= $\frac{100 \times 10^3 (1000 + 3t)\; \times 0.8134t}{4.5t^2 \times 0.1866t \times 2t}$

= $\frac{(1000 + 3t)\;\times 81.34\;\times\;10^3 t}{1.6794.t^4}$

= $(\sigma_{b})_{max}$

(V) $\sigma_{t}$ = $\frac{P}{A}$ = $\frac{100 \times 10^3}{4.5t^2}$ = $\frac{22.2222\;\times\;10^3}{t^2}$

(VI) $(\sigma_{b})_{max}$ + $\sigma_{t}$ = $\sigma_{max}$

$\therefore 66.6667 = \frac{(1000 + 3t)\;\times 81.34\;\times\;10^3 t}{1.6794t^4} + \frac{22.2222\;\times\;10^3}{t^2}$

$\therefore 66.6667 = \frac{(1000 + 3t)\;48.434\;\times\;10^3}{t^3} + \frac{22.2222\;\times\;10^3}{t^2}$

$\therefore t = 99.18496 \ mm$

Please log in to add an answer.