written 5.8 years ago by |
Given
L=5.9m = 5900 mm
Pu=2000$\times 10^{3}$N
required two channel back to back with battern & site welding $\gamma$ mw=1.5
- Pu=Aea$\times $ fcd
2000$\times 10^{3}$=Area$\times$ 150
Area=13333.33mm$^{2}$
Area of each section=$\frac{13333.33}{2}=6666.67mm^{2}$
provide fcd=190mpa
Pu=Area$\times$ fcd
2000$\times 10^{3}=Area\times$190
Area=1056.31mm$^{2}$
Area of each section=$\frac{10526.31}{2}$=5263.15mm$^{2}$
2) Provide ISMC 350
Aprov=5366mm$^{2}$
$\gamma$ xx=136.6mm $ \ \ \ \ \ \ \ $ Ixx=10008$\times 10^{4} mm^{4}$
$\gamma $yy=28.3mm $ \ \ \ \ \ \ \ \ \ \ $ Iyy=430.6$\times10^{4}mm^{4}$
Cyy=24.4
$\frac{kL}{\gamma}=\frac{5900}{136.6}=$43.19
$\lambda e=1.1\times$43.19
$\lambda$e=47.51
40 $ \ \ \ \ \ \ \ \ $ 198
47.51 $ \ \ \ \ $ fcd
50 $ \ \ \ \ \ \ \ \ \\ $183
fcd=186.74mpa
Pd=Ae$\times$ fcd
=2$\times5366)\times$186.74
Pd=2004.09kN$\gt$ 2000 KN s safe
Step II
Ixx=Iyy
2[Ixx$_{1}+Ab^{2}]$=2[Ixx+Ah$^{2}]$
[10008$\times 10^{4}+0]=[430.6\times 10^{4}+5366(\frac{5}{2}+cyy)^{2}]$
S=218.99mm
S=220mm
Step III Sapcing between batten
$\frac{c}{\gamma yy}\lt50$ & $\frac{c}{\gamma yy}\lt 0.7 \lambda e$
c$\lt$50$\times \gamma yy$
c$\lt 50\times$28.33
c$\lt$1415mm
c$\lt0.7\times \lambda \times \gamma yy$
$\lt0.7\times97.81\times28.3$
$\lt$941.17
c=940mm
Step IV Size of batten
end batten
over all depth=eff depth d$^{'}$
d$^{'}$=s+2cyy
=220+2(24.4)
=268.8
D=270mm
thickness=$\frac{1}{50}\times s$
=$\frac{1}{50}\times $220
=4.4mm
provide 8mm
overlao=$4\times$ 8 =32mm
length provide 60mm
length=s+2$\ast$ overlap
=220+2$\ast$ 60
=340mm
Intermedient
d=$\frac{3}{4}d^{\prime}$
=$\frac{3}{4}\times$270
D=d=205mm
t=8mm
Step V check for shear stress
$\frac{V}{dt}\lt\frac{fy}{\sqrt{3}\ast \gamma mo}$
Vb=$\frac{Vt\times c}{2N}$
Vt=2.5$\ast $ P4
$\frac{2.5}{100}\times 2000\times 10^{3}$
$\frac{Vt=5000 N}{Vt=50kN}$
shear stress=$\frac{Vb}{d\times t}$
$\frac{69.12\times 10^{3}}{250\times 8}$
=42.15$\times131.26$
safe
Vb=$\frac{50\times10^{3}\times 940}{2\times (s+2 overlap)}$=$\frac{50\times10 ^{3}\times 940}{2(5+260)}$
Vb=69.12$\times10^{3}$N
Shera Stress=$\frac{69.12\times 10^{3}}{270\times 8}$=32KN$\lt \frac{fy}{\sqrt{3}.\gamma m}$=131.26
Step VI Check for bending stress=$\frac{6m}{td^{2}}$
end batten
m==$\frac{vt\times c}{2N}=\frac{50\times 10^{3}\times 940}{2(2)}$
m=11.75$\times 10^{6}$ N.mm
bending stress=$\frac{6\times 11.75\times10^{6}}{8\times 270^{2}}$
=120.88mpa
$\lt\frac{fy}{\gamma mo}$=227.27
Intermedient
b. stress=$\frac{6\times 11.75\times 10^{6}}{8\times 205^{2}}$
=209.70mpa
$\lt$ 227.27
Step VII
Connection
(rn)$^{2}=30^{2}+(\frac{205}{2})^{2}$
direct shera stress=(f1)=$\frac{Vb}{Lw\times t}$
=$\frac{69.12\times 10^{3}}{530\times 1}$
f1=130.41N/mm
Torrtn stress(F2)=$\frac{m.\gamma n}{IP}$
IP=IXX+IYY
Ixx=$2[\frac{60\times t^{3}}{12}+Ah^{2}]+2[\frac{t\times 205^{3}}{12}+0]$
Ixx=2.69$\times10^{6}mm^{4}$
Iyy=2[$\frac{1\times60^{3}}{12}$+0]+2[$\frac{25\times t 3}{12}+(205\times )\times 30^{2}]$
Iyy=405$\times10^{3}mm^{4}$
Ip=Ixx+Iyy
=2.69$\times10^{6}+405\times 10^{3}$ $ \ \ \ \ \ \ $ rn$^{2}=(30)^{2}+(\frac{205}{2})^{2}$
=3.0595$\times10^{6}mm^{4}$ $ \ \ \ \ \ \\ $ $\gamma $n=106.800
bending stress=$\frac{m.rn}{2D}$
=$\frac{11.75\times10^{6}\times106.8}{3.095\times10^{6}}$
cos$\theta=\frac{30}{106.8}$
f2=405.46N/mm
$\theta=0.28^{\circ}$
Resultant stress=$\sqrt{F_{1}^{2}+F_{2}^{2}+2F_{1}F{2}cos\theta}$
$=\sqrt{130.47^{2}+405.46^{2}+2\times130.42\times 405.46\times \gamma cos\theta}$
R=459.37N/m--------eq A
force in p=Lw$\times FT.T\times \frac{fu}{\sqrt{3}\gamma mw}$
459.37=1$\times(0.7\times sw)\frac{410}{\sqrt{3}\times 1.5}$
459.37=1$\times(0.7sw)\frac{410}{\sqrt{3}\times 1.5}$
sw=4.16mm
sw=5mm