written 5.8 years ago by |
two channel back to back * talce steel fe 410
Given
Pu=1100 kN
=1100$\times 10^{3}N$
leff=KL
=1$\times$9000(both end hinged)
Step I Pu=Area $\ast $ fcd
1100$\times10^{3}=Area\ast$150 Assume fcd=150
Area=733.33mm$^{2}$
Area of each channel =$\frac{7333.330}{2}=3666.67mm^{2}$
provide ISMC 300
Aprov =4564mm$^{2}$
Total provide=2$\times$4564
=9128mm$^{2}$
$\gamma$xx=118.1mm
$\lambda$act=$\frac{9000}{118.1}$
$\lambda$act=76.20
$\lambda$e=1.1$\times \lambda$act
=1.1$\times$76.20
=$\lambda$e=83.83
80 $ \ \ \ \ \ \ \ \ \\ \ \ $ 196
83.83 $ \ \ \ \ $ fcd
90 $ \ \ \ \ \ \ \ \ \ \\ \ \ $121
fcd=130.26mpa
$\gamma$xx=118.1 $ \ \ \ \ $ Ixx=6362.6$\times10^{4}mm^{4}$
$\gamma$ yy=26.1 $ \ \ \ \ $ Iyy=310.8$\times10^{4}mm^{6}$
bf=90mm
tf=13.6mm
Assume gauge g=50mm
Pd=Ae$\times$fcd
=9128$\times$130.26
Pd=1188.96kN=1100kN Safe
Step II
Ixx=Iyy
2[Ixx1+Ah$^{2}]$=2[Ixx2+Ah$^{2}$
(6362.6$\times10^{4}$+0)=(310$\times10^{4}+4564(\frac{5}{2}+Cyy)^{2})$
enter image description here][1 s=183.86mm
Provide s=200mm
Step III
Spacing between batterns
$\frac{c}{\gamma yy}\lt 50$ $ \ \ \\ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ $ $\frac{c}{\gamma yy}\lt0.7\ast \lambda e$
c$\lt50\ast\gamma yy$ $ \ \ \ \ \ \ \ \ \ $ c$\lt0.7\ast \lambda e\ast \gamma yy$
$ \ \ \ \ \ \ \ \ \ $ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ C$\lt0.7+83.83\ast$26.1
c$\lt$ 1305mm $ \ \ \ \ \ \ \ \ \ \\ $ c$\lt$1531.5mm
c=1300mm
c=centre tp centre distance betweenbattern
Step V
end battern
d$^{'}$=s+cccy
$d^{'}$200+2(23.6)
$d^{'}$=247.2mm
D=$d^{'}$+26
-247.2+(2$\times$30)
=247.2+(2$\times$30)
D=307.2 Proide D=310 mm
length of intermedaite battens lenght=s+2bf
=200+2$\times$90
=380mm
t=$\frac{1}{50}(s+29)$
=$\frac{1}{50}$(200+2$\times$50)
t=6mm
Provide end batten 380$\times$ 310$\times$6mm
Intemedient battern
d=$\frac{3}{4}d^{'}$
=$\frac{3}{4}\ast$ 247.2
d=185.4mm
D=185.4+2$\ast$ 30
D=245.4mm
D=250provide
L=380mm
F$\frac{1}{50}$(s+29)
=$\frac{1}{50}$(300) t=6mm
provide intermedient batten 380$\times$ 250$\times$6 mm
Step VI
Check for shear stress
End battern
shear stress=$\frac{vb}{d\times t}$
$\lt\frac{fy}{\sqrt{3}\gamma mo}$
Vb=$\frac{Vt\times c}{N\times S}$
Vt=2.5% Pu
$\frac{2.5}{100}\times 1100\times10^{3}$
=27.5kN
Vb=$\frac{(27.5\times 10^{3})\ast 1300}{2\times(s+29)}$
=5.58$\times 10^{3}$N
shear stress=$\frac{59.58\times 10^{3}}{310\times 6}$
=32.03mpa
32.03$\lt $131.21 hence safe
Intermediant battern
S .stress=$\frac{Vb}{d\times t}$
$\lt \frac{fu}{\sqrt{3}\ast \gamma mo}$
=$\frac{59.58\times10^{3}}{250\times6}$
=39.72 mpa $\lt \frac{250}{\sqrt{3}\times7.1}$
=39.72 $\lt$ 131.21 safe
Step VI
Check for bending stress
end battern
bending stress=$\frac{6m}{td}$=$\lt\frac{fy}{\gamma mo}$
m=$\frac{Vt\times C}{2N}$
=$\frac{27.5\times 10^{3}\times 1300}{2\times 2}$
=8.94$\times 10^{6}$ N.mm
put m value in eq II
bending stress$\frac{6\times8.94\times10^{6}}{6\times 310^{2}}$
=15.02$\lt\frac{250}{1.1}$
15.50$\lt$227.27
hence safe
Intermedient battern
B.stress=$\frac{6\times8.94\times10^{6}}{6\times2502}$
=143.04$\lt$ 227.27
hence safe
Step 7
Connection provide 10mm $\phi$ bolt
Vdsb=$\frac{fub\times Anb\times nn}{\sqrt{3}\times \gamma mb}$
Vdsb=45.26kN
Vdsb=45..26kN
Vdpb=2$\times kb\times d\times t\times fu$
=2$\times0.51\times 20\times 6\times 410$
Vdpb=48KN
Bolt value=45.26kN
No.of bolt=$\frac{59.58\times10^{3}}{45.26\times10^{3}}$=1.32 provide 3 bolt
Step 8
Check for force in bolt
Direct shera force=$\frac{force}{No.\ of \ bolt}=\frac{58.58\times10^{3}}{3}$
=19.86$\times 10^{3}$N
Tortion force=$\frac{m\ast \gamma n}{\Sigma \gamma ^{2}}$
=$\frac{8.94\times10^{6}\ast \gamma n}{\Sigma \gamma ^{2}}$
pitch=$\frac{310-2\times 50}{2}$
pitch=125
pitch$\lt$ 32 t
or $\lt$300 mm
Tortn force=$\frac{8.94\times10^{6}\times125}{(125)^{2}+(125)}$
F2=$35.76\times 10^{3}$N
Resultant force in bolt=$\sqrt{F_{1}^{2}+F_{2}^{2}}$
=$\sqrt{(19.86\times 10^{3})^{2}+(35.76\times 10^{3})^{2}})$
R=40.87$\times 10^{3}N$
R$\lt$Bv
$\lt$45.26KN safe