0
4.4kviews
design built up column 9m long to carry factor axial comp load 1100kN column is restrain in position but not in direction at both end design the column with connecting system as batten bolted sys used
1 Answer
0
190views

two channel back to back * talce steel fe 410

Given

Pu=1100 kN

=1100$\times 10^{3}N$

leff=KL

=1$\times$9000(both end hinged)

Step I Pu=Area $\ast $ fcd

1100$\times10^{3}=Area\ast$150 Assume fcd=150

Area=733.33mm$^{2}$

Area of each channel =$\frac{7333.330}{2}=3666.67mm^{2}$

provide ISMC 300

Aprov =4564mm$^{2}$

Total provide=2$\times$4564

=9128mm$^{2}$

$\gamma$xx=118.1mm

$\lambda$act=$\frac{9000}{118.1}$

$\lambda$act=76.20

$\lambda$e=1.1$\times \lambda$act

=1.1$\times$76.20

=$\lambda$e=83.83

80 $ \ \ \ \ \ \ \ \ \\ \ \ $ 196

83.83 $ \ \ \ \ $ fcd

90 $ \ \ \ \ \ \ \ \ \ \\ \ \ $121

fcd=130.26mpa

$\gamma$xx=118.1 $ \ \ \ \ $ Ixx=6362.6$\times10^{4}mm^{4}$

$\gamma$ yy=26.1 $ \ \ \ \ $ Iyy=310.8$\times10^{4}mm^{6}$

bf=90mm

tf=13.6mm

Assume gauge g=50mm

Pd=Ae$\times$fcd

=9128$\times$130.26

Pd=1188.96kN=1100kN Safe

Step II

Ixx=Iyy

2[Ixx1+Ah$^{2}]$=2[Ixx2+Ah$^{2}$

(6362.6$\times10^{4}$+0)=(310$\times10^{4}+4564(\frac{5}{2}+Cyy)^{2})$

enter image description here][1 s=183.86mm

Provide s=200mm

Step III

Spacing between batterns

$\frac{c}{\gamma yy}\lt 50$ $ \ \ \\ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ $ $\frac{c}{\gamma yy}\lt0.7\ast \lambda e$

c$\lt50\ast\gamma yy$ $ \ \ \ \ \ \ \ \ \ $ c$\lt0.7\ast \lambda e\ast \gamma yy$

$ \ \ \ \ \ \ \ \ \ $ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ C$\lt0.7+83.83\ast$26.1

c$\lt$ 1305mm $ \ \ \ \ \ \ \ \ \ \\ $ c$\lt$1531.5mm

c=1300mm

c=centre tp centre distance betweenbattern

Step V

end battern

d$^{'}$=s+cccy

$d^{'}$200+2(23.6)

$d^{'}$=247.2mm

D=$d^{'}$+26

-247.2+(2$\times$30)

=247.2+(2$\times$30)

D=307.2 Proide D=310 mm

length of intermedaite battens lenght=s+2bf

=200+2$\times$90

=380mm

t=$\frac{1}{50}(s+29)$

=$\frac{1}{50}$(200+2$\times$50)

t=6mm

Provide end batten 380$\times$ 310$\times$6mm

Intemedient battern

d=$\frac{3}{4}d^{'}$

=$\frac{3}{4}\ast$ 247.2

d=185.4mm

D=185.4+2$\ast$ 30

D=245.4mm

D=250provide

L=380mm

F$\frac{1}{50}$(s+29)

=$\frac{1}{50}$(300) t=6mm

provide intermedient batten 380$\times$ 250$\times$6 mm

Step VI

Check for shear stress

End battern

shear stress=$\frac{vb}{d\times t}$

$\lt\frac{fy}{\sqrt{3}\gamma mo}$

Vb=$\frac{Vt\times c}{N\times S}$

Vt=2.5% Pu

$\frac{2.5}{100}\times 1100\times10^{3}$

=27.5kN

Vb=$\frac{(27.5\times 10^{3})\ast 1300}{2\times(s+29)}$

=5.58$\times 10^{3}$N

shear stress=$\frac{59.58\times 10^{3}}{310\times 6}$

=32.03mpa

32.03$\lt $131.21 hence safe

Intermediant battern

S .stress=$\frac{Vb}{d\times t}$

$\lt \frac{fu}{\sqrt{3}\ast \gamma mo}$

=$\frac{59.58\times10^{3}}{250\times6}$

=39.72 mpa $\lt \frac{250}{\sqrt{3}\times7.1}$

=39.72 $\lt$ 131.21  safe

Step VI

Check for bending stress

end battern

bending stress=$\frac{6m}{td}$=$\lt\frac{fy}{\gamma mo}$

m=$\frac{Vt\times C}{2N}$

=$\frac{27.5\times 10^{3}\times 1300}{2\times 2}$

=8.94$\times 10^{6}$ N.mm

put m value in eq II

bending stress$\frac{6\times8.94\times10^{6}}{6\times 310^{2}}$

=15.02$\lt\frac{250}{1.1}$

15.50$\lt$227.27

hence safe

Intermedient battern

B.stress=$\frac{6\times8.94\times10^{6}}{6\times2502}$

=143.04$\lt$ 227.27

hence safe

Step 7

Connection provide 10mm $\phi$ bolt

Vdsb=$\frac{fub\times Anb\times nn}{\sqrt{3}\times \gamma mb}$

Vdsb=45.26kN

Vdsb=45..26kN

Vdpb=2$\times kb\times d\times t\times fu$

=2$\times0.51\times 20\times 6\times 410$

Vdpb=48KN

Bolt value=45.26kN

No.of bolt=$\frac{59.58\times10^{3}}{45.26\times10^{3}}$=1.32 provide 3 bolt

Step 8

Check for force in bolt

Direct shera force=$\frac{force}{No.\ of \ bolt}=\frac{58.58\times10^{3}}{3}$

=19.86$\times 10^{3}$N

Tortion force=$\frac{m\ast \gamma n}{\Sigma \gamma ^{2}}$

=$\frac{8.94\times10^{6}\ast \gamma n}{\Sigma \gamma ^{2}}$

enter image description here

pitch=$\frac{310-2\times 50}{2}$

pitch=125

pitch$\lt$ 32 t

or $\lt$300 mm

Tortn force=$\frac{8.94\times10^{6}\times125}{(125)^{2}+(125)}$

F2=$35.76\times 10^{3}$N

Resultant force in bolt=$\sqrt{F_{1}^{2}+F_{2}^{2}}$

=$\sqrt{(19.86\times 10^{3})^{2}+(35.76\times 10^{3})^{2}})$

R=40.87$\times 10^{3}N$

R$\lt$Bv

$\lt$45.26KN safe

enter image description here

Please log in to add an answer.