written 5.8 years ago by |
b) bearing strength of concrete =0.6$\times$fck =0.6$\times$15=9mpa
M15-fck=15
Required-welded gusseted base
1) AP=$\frac{pu}{0.6\times15}=\frac{1700\times10^{3}}{0.6\times 15}$
Ap=183.89$\times 10^{3}mm^{2}$
2) width of base plate(Bp)=350+2(16)
Bp=382mm
Assume gusset plate 16mm$\gt$tf
16mm$\gt$11.6 safe
overhange=$\frac{450-382}{2}$=34mm
Bp=350+2(16)+2(34)
Bp=450mm
3) Lb=$\frac{Ap}{Bp}=\frac{188.89\times10^{3}}{450}$=419.76mm
Lp=430mm
Step II. Thickness of base plate
Bmxx=$\frac{wl^{2}}{2}$ L=50 w= $\frac{pu}{AD}=\frac{1700\times 10^{3}}{450\times 436}$
W=8.885mpa
8.87$\lt0.6\times $fck
$\lt0.6\times$15
8.78$\lt 9$
MD=$zp\ast\frac{fy}{\gamma mo}$
$S\ast(Ze)\ast\frac{250}{3.1}$
10.98$\times 10^{3}=1.1085\ast(\frac{1\times t^{2}}{6})\ast\frac{250}{1.1}$t=16.18
t=16.18
t=18mm
Bm$\frac{wl^{2}}{8}=\frac{wl^{2}}{2}$
=$\frac{8.785\ast 350^{2}}{8}-\frac{8.785\ast50^{2}}{2}$
BM=183.85$\times10^{3}$Nmm
MD=S$\ast (\frac{1\ast t^{2}}{2}\ast\frac{250}{1.1})$
123.53$\times10^{3}=1.1085\times 1\times \frac{t^{2}}{6}\ast\frac{260}{1.1}$
t=54.74
Central partial has Bm in two section t=$\frac{54.25}{2}$-27.19
t=28mm
base plate=460$\times430\times18$
Connection assume 6mm fillet weld
Pd=(Lw)$\ast (E.T.T)+\frac{fu}{\sqrt{3}\ast \gamma me}$
$\frac{1700\times10^{3}}{2}=(Lw)+(0.7\times 16)\ast\frac{410}{\sqrt{3}\times1.25}$. Shop weld
Let=1068.70mm
Connection length of column flange with gusset plate available length of connection between column flange to gusset plate
(2$\times250)$+4(150)
=100mm
110$\gt$Lwreeq. Safe
Slant height of gusset plate
So=$\sqrt{90^{2}+90^{2}}$So=127.27
Permissible =o/s=13.6$\ast\epsilon\ast tg$
=217.6mm
Permissible o/s 2176$\gt$So. Provide
Safe