0
570views
Batterns Batterns
1 Answer
0
1views
  1. Design built up section

$\lambda$ e=1.1 $\lambda$act . . .. .IS Pg 51 Claus 7.7.1.4

  1. Spacing between channel

Ixx=Iyy

  1. Spacing between battens

$\frac{c}{\gamma yy}\lt 0.7 \ast \lambda e$ & $\frac{c}{\gamma yy}\lt 50$

  1. size of batterns

end batterns $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ Intermediate battern

a) depth=d^${'}$-pg51 (7.72.3) $ \ \ \ \ \ \ \ $ a)depth=$\frac{B}{4}d^{'}$ b) length $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ b) length c)thickness $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ c) thickness 5. check for end battern shera stress =$\frac{Vb}{d\times t}$ $\lt\frac{fy}{\sqrt{3}\ast\gamma mo}$ where Vb=$\frac{Vt\ast c}{N\times s}$ $ \ \ \ \ \ \ \ $ IS pg 51 (clause 7.7.2.1) S=s+29 Intermediate Battern Shear stress=$\frac{vb}{d\times t}$ $\lt\frac{fy}{\sqrt{3}\times\gamma mo}$ Vb=$\frac{vt \ast c}{N\times s}$ 6. check for bending stress end battern $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ Intermediate battern bending stress=$\frac{6M}{td^{2}} \ \ \ \ \ \ \ \ B.stress=\frac{6M}{td^{2}}$ $\lt \frac{fu}{\gamma mo} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \lt\frac{fy}{\gamma mo}$ where M$\frac{vf\ast c}{2N}$ is clasue 7.7.31 Pg 51 7. Connection Vdsb ...single shear VdpB . . . . Bv NO.of bolt=$\frac{load-Vb}{f.v}$ 8. Check for force in bolt 1) Direct shear faprce =$\frac{force}{No \ of \ bolts}$ 2) Tortion force=$\frac{M\ast \gamma n}{\Sigma r^{2}}$

Please log in to add an answer.