written 5.9 years ago by |
fe 40 and bolt of grade 4.6 case I) Design the column with two channel placed back to back case II) Design the column with two channel place face to face case II) Design the lacing system with side welding connection from channel back to back
Pu=1080 $\times 10^{3}$N
l=10m=10000 mm
leff=kl
=1.0$\times$ 10000
leff=10000mm
fe=410
fy=250mpa
Required -design single lacing built up column
step 1 Design of column section
Pd=Ae$\times $fcd
1080$\times10^{3}$=Area$\times$150
Area=7200mm$^{2}$
for 1 channel=$\frac{7200}{2}=3600mm^{2}$
provide 215 mc 300@ 351.2 N/m
A=4564mm$^{2}$
bf=90mm
tf=13.6mm
$\gamma$xxx=118.1mm
$\gamma$yy=26.1mm
cyy=23.6mm
Ixx=63626$\times10^{4}mm^{4}$
Pd=Ae$\times$fcd
To find fcd
$\frac{kL}{\gamma min}=\frac{10000}{118.1}$=84.67
$\lambda=1.05\times 84.67$=88.9
80 $ \ \ \ \ \ $ 136
88.9 $ \ \ \ \ \ \ $fcd
90 $ \ \ \ \ \ \ \ \ \ $ 121
$\frac{90-80}{90-88.9}=\frac{121-136}{121-fcd}$
fcd=122.65
fd=2(4564)$\times$122.6
=1119.5$\times10^{3}\gt 1080\times10^{3}$N safe
Step II Provide spacing
spacing between channel
Ixx=Iyy
2$[Ixx_{1}+Ah^{2}=[Ixx_{2}+Ah^{2}]$
[6362.6$\times10^{4}+10]$=$[310.8\times10^{4}+4564\times(\frac{5}{2}+cyy)^{2}]$
S=183.10mm
provide 184mm
step III Design of lacing
1) Angle of inclination
$\theta=45^{\circ}$ clause 7.6.4
2) width of lacing =3$\times16$ (Assume d=16mm)
=48mm
width of lacing =50mm
3) leff
Sin$\theta=\frac{s+2g}{leff}$
leff=$\frac{S+2g}{sin\theta}=\frac{(184+2\times 50)}{sin \ 45}$=401mm
provide leff=402mm
tan$\theta\frac{x}{(5+29)}$
x=$\frac{5+29(tan\theta)}{tan\theta}$
x=(184+2x50)(tan45$^{\circ})$
x=284mm
distance between lacing point
=2x284
=568mm
$\frac{a}{\gamma y}\leq 50$
$\frac{568}{261} \lt 50$
$\frac{a}{\gamma y}\lt0.7 \times \lambda c$
$\frac{568}{26.1}\lt0.7 \times 88.9$
21.76$\lt$62.23
v) f=$\frac{1}{40}\times eff$ length
$\frac{1}{40}\times$402
f=10.06
provide 12mm thickness
vi) Radius of gyration
$\gamma min=\frac{t}{\sqrt{12}}$
$\frac{12}{\sqrt{12}}$
$\gamma$ min=3.46mm
Step IV Check for compression
V=(2.5%)$\frac{1080\times10^{3}}{2}$
V=$\frac{2.5}{100}\times\frac{1080\times10^{3}}{2}$
v=13.5kN
V=Fsin$\theta$
F=13.5
F=19.09KN
PDAex$\times$fcd
=(50$\times12)\times$fcd
$\lambda=\frac{kl}{\gamma min}=\frac{402}{3.46}$=116.18
110 $ \ \ \ \ \ \ \ \ \ \ $94.6
116.18 $ \ \ \ \ $ fcd
120 $ \ \ \ \ \ \ \ \ $ 83.7
$\frac{(120-11)}{(120-116.18)}=\frac{(83.7-94.6)}{(83.7-fcd)}$
fcd=87.86
Pd=(50$\times12)\times$ 87.86
Pd=52.71 kN=F(19.09) Hence safe Assumption
should be correct
Step V
Check for tention
1) Tdg=Ag$\times\frac{fy}{\gamma mo}$
=(50$\times12)\times\frac{250}{1.1}$
Tda=136.36KN
2) Tdn=0.9$\times An\times\frac{fu}{\gamma ml}$
=0.9$\times[(50-18)\times12]\times\frac{410}{1.25}$
Tdn=113.35kN
Tdn=113.35 19.09 hence safe
step VI bolted connection
vdsh=$\frac{An.nn.fub}{\sqrt{3}\times \gamma mb}$
=$\frac{157\times2\times400}{\sqrt{3}\times1.25}$
Vcl sb=58.01
vdpb=2$\times kb\times \phi \times t\times fu$
=2$\times 0.51\times 16\times 12 \times410$
vdpb=46.35kN
Bolt value =46.35$\gt$19.09----safe
provide 1 NO.of bolts 16mm $\phi$
Step VII Design of Tie member plate
effective depth=(5+2.cyy)
=(184.4+2$\times$33.6)
=231.2mm
Provide 235 mm effective depth
overall depth=235+2$\times$ 30=295mm
length of tie plate=s+2$\times$ bf
=184+2$\times $90
=364mm
t=$\frac{1}{50}(s+29)$
t=$\frac{1}{50}(184+2\times 30)$
t=4.88
t=$\approx$8mm
Case II Channel place Toe to Toe
Step I design built-up column
Au=Area $\times$ fcd
1080 $\times10^{3}$=Area$\times $150
Area=7200mm$^{2}$
Required for each channel= 3600mm$^{2}$
provide Ismc 300@ 351.2 N/m
$\gamma$ xx=118.1mm Ixx=6363.6$\times 10^{4}mm^{4}$
$\gamma yy=26.1mm \ \ \ \ Iyy=310.8\times10^{4}mm^{4}$
A provide =4564mm$^{2}$
A provide area=2$\times 4564=9128 mm^{2}$
Pd=Ae$\times$fcd
=9128$\times$122.65
=1119.25$\times10^{3}\gt 1080\times 10^{3}$ Analysis is safe
$\lambda act=\frac{kL}{\gamma}=\frac{10,000}{\gamma xxx}=\frac{10000}{118.1}=84.97$
$\lambda e=1.005\times 84.64$
=88.9
$\frac{kL}{\gamma}$
$ \ \ \ \ \ \ \ \ $ fcd
80 $ \ \ \ \ \ \ \ \ \ \ $ 6
88.9 $ \ \ \ \ \ $ fcd
90 $ \ \ \ \ \ \ $ 12
fcd=122.65 --by interpolation
Pd=Ae$\times$fcd
=9128$\times$122.65
=1119.25$\times 10^{3}\gt1080\times 10^{3}$ safe
Step II
IXX=Iyy
2[Ixxx+Ab$^{2}$=2[Iyy+Aehe$^{2}]$
[63626$\times10^{4}+0[310\times 10^{4}+456\times(\frac{5}{2}-Cyy)^{2}]$
x=2775mm
s=278mm
Step III Design of lacing
L=251.73
W=3$\times(dia \ of \ bolt)=8\times16=48\approx$50mm
$\theta$=45
Sin$\theta=\frac{5-29}{byp}$
leff=$\frac{s-29}{sin\theta}$
=$\frac{278-2\times 50}{sin45}$
leff=251.7mm
t=$\frac{1}{40}$(leff)
$=\frac{1}{40}\times$251.73
=6.29mm
f=8mm
Spacing between lacing point=2x
tan(90-$\theta=\frac{x}{6-29}$
x=$(278-2\times 90)\times tan(90-45)$
x=178mm
lacing point=2x
=2$\times$ 178
=356mm
Step IV Vt=2.5%$\frac{pu}{2}$
=$\frac{2.5}{100}\ast\frac{1080\times10^{3}}{2}$
vt=13.5$\times 10^{3}$N
Fsin$\theta$=vt
F=$\frac{vt}{sin\theta}$
F=$\frac{13.5\times 10^{3}}{sin45^{\circ}}$
F=19.09KN
$\frac{q}{\gamma 1} \lt0.7\lambda e$ & $\frac{a}{\gamma 1}\lt 50$
$\frac{356}{26.1}\lt 0.7\times$88.9
13.64$\lt$62.23
hence safe
Pd=Ae$\times$ fcd
=(50$\times$8)$\times$fcd
$\gamma min=\frac{t}{\sqrt{12}}=\frac{8}{\sqrt{12}}=2.31$
$\lambda e=\frac{252}{2.31}$=109.09
KL/rmin $ \ \ \ \ \ \ $ fcd
100 $ \ \ \ \ \ \ \ \ \ \ \ $ 107
109.09 $ \ \ \ \ \ \ $ fcd
110 $ \ \ \ \ \ \ \ \ \ \ \ $ 04.6
fcd=95.88mpa
Pd=(50$\times8)\times$ 95.88
Pd=38.35KN$\gt$19.09 KN Hence safe
Step V Tention capacity of end plate
Tdg=Ag$\times\frac{fy}{\gamma mn}$
=(50$\times 8)\times\frac{250}{1.1}$
Tdg=90.9KN