written 2.6 years ago by
Chandan15
• 300
|
•
modified 2.6 years ago
|
Given Data:
$$
\begin{array}{l}
d=0.5 m \\
\alpha=0.7
\end{array}
$$
- Case I :-Considening as individeral pile,
$Q_{u}=Q_{f}+Q_{up}$ (neglected)
$Q_{u}=\alpha \mathrm{CuAs}_{4}$
$Q_{u}=0.7 \mathrm{Cu} \times \pi \times 0.5 \times \mathrm{L}$
$$
\begin{array}{l}
Q u g_{2}=\alpha \mathrm{cu} \text { As } \\
Q ug_{2}=1 \times \mathrm{Cu} \times 4 \times(4S+0.5) \times \mathrm{L}
\end{array}
$$
Thus, $Q u g 1=Q ug_{2}$ $\Rightarrow 27.49 \mathrm{Cu} L=4 \times(4S+0.5) \mathrm{CuL}$ $\Rightarrow \quad 4 \mathrm{~L}+0.5=6.87$
Hence,S=1.593m
As Per Is code
Smin $=3 d=1.5 \mathrm{~m}\lt S(OK)$ Thus, Provide,spacing $=1.6 \mathrm{~m}(\mathrm{say})$
Group Efficiency as per Converse labarres
$$
\begin{aligned}
\theta &=\tan ^{-1}\left(\frac{d}{S}\right) \\
\Rightarrow & n g=1-\frac{17.354}{90} \times\left[\frac{(4 \times 5)+(5 \times 4)}{5 \times 5}\right] \\
n_{g} &=0.6915=69.15 \%
\end{aligned}
$$