written 5.8 years ago by |
Given
Pu = 1800kN = 1800$\times10^{3}$N
l=8m=8000mm
Left=KL
K=0.8......(IS. Pg 45. Clause)
Left =0.88$\times8000$
=6400mm
fe=410fy=250= mpa
Required = Built up section
Step I. Design of column section
Pd=Ae$\times$Fcd
1800$\times10^{3}=Ae\times150$
Ae=$\frac{1800\times10^{3}}{150}$
Area of each section = $\frac{1200}{2}=6000mm^{2}$
Provide two channel section
Ismc 400
Area= 6299mm${2}$
Ixx =15082.8$\times10^{4}$
Iyy=504.8$\times 10^{4} mm^{4}$
Cyy=24.2m
$\lambda$xx=154.8mm
$\lambda$yy=28.3mm
Ad=Ae$\times$fcd
We=2$\times 6293=12586mm^{2}$
Fcd=?
$\frac{Kl}{\gamma min}$=$\frac{6400}{154.8}$=41.374
$\lambda=\frac{Kl}{\gamma min}$=$\frac{6400}{154.8}$=41.374
$\lambda=1.05\times\lambda e$
=1.05$\times$41.374
$\lambda$==43.414
$\lambda=\frac{Kl}{r} \ \ \ \ \ \ $ Fcd
40 $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ 198
43.414$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ ?
50 $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $183
$\frac{(50-40)}{(50-43.414)}$=$\frac{(183-198)}{(183-fcd)}$
fcd=192.879
Pd=12586$\times$192.879
Pd=2427$\times$10$^{3}$N
StepII. Provide spacing
Spacing between channel
[15082.8$\times10^{4}+0]=[504.8\times10^{4}+6293\times(\frac{5}{2}+Cyy)^{2}]$
S=256mm
Step III. Design of lacing
a) angle of inclination
$\theta=45^{0}$ ——[class7.6.4]
b) width of lacing
= 3$\times$ d
=3$\times$20
=60mm
c)t=$\frac{1}{40}\times $eff length—-[ clause 7.6.3]
$\frac{1}{40}\times476$
t=11.87
t=12mm
d)Radius of gyration
$\lambda min =t \sqrt{12}$
12$\sqrt{12}$
$\gamma$min =3.46 mm
e) distance between lacing point[Is. oh 50 class7.6.5]
$\frac{a}{ry}\lt50$
$\frac{a}{\gamma y}\lt 0.7 \times$xc
$tan(90-\theta) =\frac{opp}{Adj}=\frac{x}{256+80}$
X=(256+80)
Tan45
X=337
Spacing of lacing =2xx
=2$\times$336
Distance =672mm
$\frac{67.2}{28.3}=23.74\lt50$
$\frac{672}{28.3}\lt 0.7\times\lambda e$
$\frac{672}{28.3}\lt0.7\times43.41$
23.74$\lt$30.387
a=distance between lacing point
$\gamma$ =min radius of gyration of individual members being laced
$\lambda$e= slenderness ratio of whole section
Step iv Check for compression [clause 7.6.6.1]
V=$\frac{(2.5)18000 \times 10^{3}}{2}$
v=$\frac{2.5 }{100}\times \frac{1800\times 10^{3}}{2}$
v=22.50KN
V=fsin$\theta$
$\frac{v}{sin\theta}$=f
$\frac{22.50}{sin45}=$=f
f=31.8KN
Pd=$Ae\times$fcd
Pd=$(60\times12)\times$fcd
$\lambda=\frac{kL}{\gamma min}=\frac{476}{3.46}=137.57$
130 $ \ \ \ \ \ \ \ $ 74.3
137.57 $ \ \ \ \ $ fcd
140 $ \ \ \ \ \ \ \ $ 66.2
fcd=68.549
d=(60$\times12)\times$68.549
=49.35$\times10^{3}$
Pd=49.35 kN=31.8 factual saffe
Step V Check for tention
Tension capacity
1) Tdg =Ag$\times\frac{fy}{\gamma mo}$
=(60$\times12)\times\frac{250}{1.1}$
2) Tdn=0.9$\times12)\times \frac{250}{\gamma ml}$
=0.9$\times(60-22)\times12)\times\frac{410}{1.85}$
Tdn=149.58KN
Tdn=149.58KN
Tdn=149.58 $\gt$cf=31.8
Analysis is safe
Step Vi Bolted connection
Vdsb=$\frac{an\times nn\times fub}{\sqrt{3}\times\gamma mb}$
=$\frac{245\times2\times400}{\sqrt{3}\times1.25}$
Vdsb=90.52KN
Vdpb=2$\times kb\times d\times t\times fu$
=2x0.51x20x12x410
vdpb=57.95kN
Bolt value=57.95kN
BV=57.95$\gt$ f=31.8
Analysis is safe
No of bolt =1 no of bolt 20mm $\phi$
step vii Design of tie plate [clause 7.7.2.3]
effective depth=(5+2.cyy)
=(256+2$\times$28.3)
=312.6mm
provide 315 mm effective depth
overall depth=315+(2$\times$30)
=315+60
=375mm
overall depth=375mm
length of tie plate=(s+2bf)
=(256+(2$\times$ 100))
=456mm
t=$\frac{1}{50}$(5+29)
t=$\frac{1}{50}(256+2\times$ 40)
t=6.72mm
t=8mm