0
7.6kviews
A siphon of diameter 200mm connects two reservoirs having a difference in elevation of 15m. The total length of siphon is 600 m and the summit is 4 m above the water level in the upper reservoir.

If the separation takes place at 2.8 m of water absolute, find the maximum length of siphon from the upper reservoir to summit. Take f'(friction coefficient)=0.004 and atmospheric pressure = 10.3 m of water.

1 Answer
1
720views

Solution :

Diagram

enter image description here

Given :

1) $ d=200 \mathrm{~mm}=0.2 \mathrm{~m}$

2) length of Siphon $=600 \mathrm{~m}$

3) Friction factor $(f)=0.016$

4) Accelerdion due to gravity $(g)=9.81\mathrm{~m} / \mathrm{s}^{2}$

5) $P_{1}=P_{3}=10.3$ m atm of water

6) $P_{2}=2.8 \mathrm{~m}$ of water absolute pressure

7) $ v = \rho g=$ constant

Required formulae

1) Bernoullie energy equation $$ \frac{P}{v}+\frac{V^{2}}{2 g}+z=\text { constant } $$ 2) From Darcy weisbach equation $$ h_{f}=\frac{F L Q^{2}}{12.1 d^{5}} $$

Part 1 : find value of Q

Applying bernoulies energy equation at point $1 \& 3$ $$ \begin{aligned} \therefore \frac{P_{1}}{v}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{3}}{v}+\frac{V_{2}^{2}}{2 g}+z_{3}+\ h_{f(1-3)} \\ \therefore \quad v=\rho g=\text { constant} . \end{aligned} $$

$$ \begin{aligned} \therefore 10.3+0+z_{1} &=10.3+0+z_{3}+h_{f(1-3} \\ \therefore \quad z_{1}-z_{3} &=h_{f(1-3)}=\frac{\mathrm{fL} Q^{2}}{12.1 \mathrm{~d}^{5}} \\ \therefore \quad 15 &=\frac{0.016 \times 600^{2}}{12.1 \times 0.2^{5}} \\ \therefore \quad Q^{2} &=0.00605 \\ \therefore \quad Q &=77.78\times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \end{aligned} $$

Part 2 : find max length of Siphon from upper reservoir to summit. $L_{(1-2)}$ Applying bernoullies energy equalion at point 1 & 2

$$ \begin{aligned} \therefore \frac{P_{1}}{v}+\frac{V_{1}{ }^{2}}{2 g}+z_{1} &=\frac{P_{2}}{v}+\frac{V_{2}{ }^{2}}{2 g}+z_{2}+h_{ f(1-2)} \\ \therefore 10.3+0+z_{1} &=2.8+\frac{Q^{2}}{A^{2} g}+z_{2}+h_{f(1-2)}\\ \therefore 2.5-\left(z_{2}-z_{1}\right) &=\frac{Q^{2}}{2 A^{2} g}+\frac{f L_{(1-2)} Q^{2}}{12.1 \times d^{5}} \\ \therefore 7.5-4 &=\frac{(77.78 \times 10^{-3})^{2}}{2 \times(\frac{\pi}{4} \times 0.2^{2})^{2} \times 9.81}+\frac{0.016\times(77.78 \times 10^{-3})^{2}}{12.1 \times 0.2^{5}} \\ \therefore 3.5 &=.3124+0.025 L_{(1-2)}\\ \therefore L_{(1-2)} &=127.506 m \end{aligned} $$

therefore The max length of siphon from upper reservoir to summit is is 127.506 m.

If something is wrong let me know in comment section.


Please log in to add an answer.