written 5.8 years ago by |
gusset is connected to 100mm leg b) gusset is connected to 75mm leg. Assume edge distnace 30mm ^ tield stress & ultimate stress is angle 250N/$mm^{2}$ & 410N/mm$^{2}$ gauge distance is 100mm leg=60mm gauge distance in 75mm leg=40mm
a) gusset plate connected 100mm leg
i) Strength due to yielding
Tdg=$\frac{Ag\times fy}{\gamma mo}$
=$\frac{1650 \times 250}{1.1}$
Tdg=375KN
Ag=1650mm$^{2}$-steel table
or
$(100-\frac{10}{2})\times10$=950
$(75-\frac{10}{2})\times10$=700=1650$mm^{2}$
ii)Strength due to rupture
Tdn=0.9Anc $\frac{fu}{\gamma ml}+B Ago\frac{fy}{\gamma mo}$
Anc=$(100-\frac{10}{2}\times-(18)t$
$=(100-\frac{10}{2}-18)\times 10$
Anc=770mm$^{2}$
Agn=$(75-\frac{10}{2})+$
Agn=700mm$^{2}$
- Strength of due to rupture
Tdn=0.9Anc$\frac{fu}{\gamma ml}+B Aga \frac{fu}{\gamma ma}$
B=1.4-0.075$(\frac{w}{t})\times(\frac{fy}{fu})\times (\frac{bs}{le})$
w=75
t=10
bs=75+60-10=125mm
Lc=$(5\times50$)=250mm=centre to centre distance between two hole
B=1.4-0.076$(\frac{75}{10})(\frac{250}{410}(\frac{125}{250})$
B=1.23 $\leq 1.4$
Tdn=0.9$\times 770\times\frac{410}{1.25}+1.23\times700\times\frac{250}{1.1}$
Tdn=422.98KN
3) Strength due to block shear
Tdb1$\frac{Avg fy}{\sqrt{3}\gamma mo}+\frac{0.9 Afn.fu}{\gamma m1}$
Tdb2=$(\frac{0.9 Avn.fu}{\sqrt{3}.\gamma m1})+\frac{Afg \ fy}{\gamma mo}$
Avg (length $\times$thickness)
(Lckt 30)$\times$10
=280$\times$10
Avg=2800mm$^{2}$
Avn =[(280$\times10)-(5.5\times18)10]$
Avn=$1810mm^{2}$
Afg=(40$\times10)$
Afg=400mm$^{2}$
A+n=[40-$\frac{1}{2}\times18]10$
A+n=310mm$^{2}$
Tdb1=$\frac{2800\times250}{\sqrt{3}\times1.1}+\frac{0.9\times310\times250}{1.25}$
Tdb1=470.7ekN
Tdb2=$\frac{0.9\times1810\times410}{\sqrt{3}\times1.25}+\frac{400\times250}{1.1}$
Tdb$_{2}$=399.39$\times10^{3}$N
select 399.39 for block shear
Design tensile strength =375KN
(least of 375 KN,422.98KN,399.39KN]
b)when 75mm leg connect to gusset plate
i) Tdg
I) Tdg=$\frac{Ag\times fy}{\gamma ma}$
Tdg=$\frac{1650\times250}{1.1}$
Tdg=375KN
ii)Anc=$[75=\frac{10}{2}\times10-[18]10$
Anc=520mm$^{2}$
Ago=$[100-\frac{10}{2}]t$
Ago=950mm$^{2}$
B=1.4-0.076$(\frac{w}{t})(\frac{fy}{fu})(\frac{bs}{Ls})$
w=100
t=10
bs=100+40-10=130
Lc=5$\times50$
B=1.4-0.076$(\frac{100}{10})(\frac{250}{410})(\frac{130}{250})$
0.7$\geq\beta=1.159\leq1.4$
Tdn=$0.9\times 520\times\frac{410}{1.25}+1.159\times 950\times\frac{250}{1.1}$
Tdn=403.74KN
Tdb$_{1}=\frac{Avg.fy}{\sqrt{3} \gamma mo}+0.9\times Afn\times\frac{fu}{\gamma m1}$
$Tdb_{2}=\frac{0.9\times Avn\times fy}{\sqrt{3} \gamma m1}+Afg\times\frac{fy}{\gamma \ mo}$
Avg=280$\times10=2800mm^{2}$
Avn=[(280$\times10)-(5.5\times18)]10=1810mm^{2}$
Afg=$35\times10=350mm^{2}$
Afn=$(35-\frac{1}{2}\times18)10=260mm^{2}$
Tdb$_{1}=\frac{2800\times250}{\sqrt{3}\times1.1}+0.9\times360\times\frac{410}{1.25}$
Tdb$_1$=444.20KN
Tdb$_2=\frac{0.9\times1810\times250}{\sqrt{3}\times1.25}+\frac{350\times250}{1.1}$
Tdb$_2$=388.030KN
design tensile strength of given angle 375 KN
[least of 378, 403.74,388.030]