Ans:
Given,
$D=13 \mathrm{m}$
$H=5 m$
$6_{at}=1.5 N/mm^2$
$6_{st}=130 N/mm^2$
1) Volume of tank = $\pi R^2 H$
D=13m
$\therefore R = 6.5m $
$V= \pi \times6.5^2\times 5$
$V=663.66 m^3$
2) Hoop tension
$T=\frac{Lrw \times H \times D}{2}$
$T=\frac{10 \times 5 \times 13}{2}$
$T=325 \ KN$
3) Horizontal reinforcement
$A_{st}= \frac{T}{6_{st}}$
$A_{st}= \frac{325 \times 10^3}{130}$
$A_{st}= 2500 \ mm^2$
use 24 mm $\phi$ bar
$Spacing = \frac{\frac{\pi}{4} \times 24^2}{2500} \times 1000$
= 180.95mm
$\approx 175mm$
provide 24mm $\phi$ @ 175mm c/c
$A_{stp} = \frac{\frac{\pi}{4} \times 24^2}{175} \times 1000$
= $2585.08 mm^2$
4) Calculation of thickness
$6_{at}=\frac{T}{1000x + t(m-1) A_{stp}}$
$m=\frac{280}{3 \ 6{cbc}}$
but $6_{cbc}=\frac{30}{3} = 10$
$\therefore \frac{280}{3 \times 10}$
=$9.33$
$1 \cdot 5=\frac{325 \times 10^3}{1000 x+t(9 \cdot 33-1) \times 2585\cdot 08}$
$ = 195 \cdot 13 \mathrm{mm}$
$t\approx 200 \mathrm{mm}$
5) Vertical reinforcement
$100 mm=0.3 %$
$200mm= ?$
$450mm = 0.2%$
$\therefore Ast_{min}= 0.271 % bt$
=$\frac{0.271}{100} \times 1000 \times 200$
$=542 mm^2$
use 12 mm $\phi$ bar
$Spacing = \frac{\frac{\pi}{4} \times 12^2}{542} \times 1000$
= 208.67 mm
$\approx 200mm$
provide 12mm $\phi$ bar @ 200mm c/c
6) Design of base slab
Assume thickens of base slab = 300 mm
300 mm - 0.242 %
$A_{st} = \frac{0.242}{100} \times 1000 \times 300$
$= 726 mm^2$
use 16mm $\phi$ bar
$Spacing = \frac{\frac{\pi}{4} \times 16^2}{726} \times 1000$
= 276.95 mm
$\approx 250mm$
provide 16 mm $\phi$ bar @ 250mm c/c