Step 1: Design constants
Rectangular tank: $6m \times 4m$
Height: 3.5m
Grade of concrete M25 Fe415
$6_{cbc} = 8.5 N/mm^2 \quad 6_{st} = 130 \ N/mm^2$
$ m = \frac{280}{36_{cbc}} = 11$
$ k = \frac{1}{ 1+ \frac{6_{st}}{m6_{cbc}}} = 0.48$
$j=1-\frac{k}{3}=0.86$
$Q=\frac{1}{2} 6_{cbc} k_j=1 \cdot 52$
Step 2: Bending Moment Calculation
$\frac{L}{B}=\frac{6}{4}=1 \cdot 5\lt2$
For $\frac{1}{B}\lt2 \quad h= \frac{H}{4} \text{ or lm}$ whichever is greater
$ = \frac{3.5}{4} \text{ or lm} \quad h = lm$
$p=w(4-b) \quad \text{ ... w = 9800 of water fixed}$
$p=9800(3.5-1)$
$p=24.5 \mathrm{kN} / \mathrm{m}$
Bending moment at support
a] Long wall $=\frac{p L^{2}}{12}=73.5 \mathrm{KNm}$
b] Short wall $=\frac{p B^{2}}{12}=\frac{24.5 \times y^{2}}{12}=32.67 \mathrm{kNm}$
Bending Moment at center
a] Long wall $=\frac{p L^{2}}{16}=55.125 \mathrm{KNm}$
b] Short wall $=\frac{p B^{2}}{16}=24.5 \mathrm{KNm}$
Tension Developed in
a] Long wall $T_{L}=\frac{P B}{2}=49 \mathrm{KN}$
b] Short wall $T_B=\frac{P L}{2}=73.5 \mathrm{kN}$
Step 3: Design of Long wall
a] Reinforcement at support
Moment at support = $73.5 kNm$
Tension $T_L = 49 kNm$
Calculation of depth
$M = Qhd^2$
$d=\sqrt{\frac{m}{Q b}}=\sqrt{\frac{73.5 \times 10^{6}}{1.52 \times 1000}}=49.9$
$\therefore D = 260 \ mm \quad Cover \ 35 \ mm$
$\therefore d = 225 \ mm$
$\overline{x}=\frac{260}{2}-35=95 \mathrm{mm}$
$Ast = \frac{M - T \overline{x}}{6st \ j \ d} = \frac{(73.5 \times 10^6) - (48 \times 10^3 \times 95)}{130 \times 0.86 \times 225}$
$Ast_1 = 2736.8 \ mm^2$
$Ast_2 = \frac{T}{6st} = \frac{49 \times 10^3}{130} = 376.93 \ mm^2$
$\text{Total Ast} = 3113.73 \ mm^2$
Provide 25mm $\phi$ ban
$\therefore Spacing = \frac{\pi \text{/} 4 \times 25^2}{3113.73} \times 100 = 157 mm$
$\therefore \text{# 25mm } \phi \text{ @ 155 mm c/c for inner face}$
b] Reinforcement at Mid Span
moment at mid span $= 55.125 KNm$
Tension $T_L = 49 KNm$
$Ast_1 = \frac{(55.125 \times 10^6) - (49 \times 10^3 \times 95)}{130 \times 0.86 \times 225} = 2006.36 mm^2$
$Ast_2 = \frac{T}{6st} = \frac{49 \times 10^3}{130} = 376.93 mm^2$
$Total Ast = 2383.3 mm^2$
$\text{Provide # 20mm @ 125mm c/c}$
Step 4: Design of shorter wall
a] Support:
Moment at supp of short = 32.67 KNm
Tension at short wall = 73.5 KN
$Ast_1 = \frac{(32.67 \times 10^6) - (73.5 \times 10^3 \times 95) }{B_0 \times 0.86 \times 225} = 1021.17 mm^2$
$Ast_2 = \frac{73.5 \times 10^3}{130} = 565.4 mm^2$
$Total Ast = 1586.57 mm^2$
$\text{Provide # 20mm @ 195mm c/c innerface}$
b] Midd span
Moment at mid $= 24.5 KNm$
$T = 73.5 KN$
$\text{Since difference is not much}$ $\therefore$ $\text{provide same as supp #20 mm @ 195mm c/c outerface}$
Step 5: Design for cantilever action
$\begin{aligned}
BM &= \frac{1}{2} \times w H \times h \times \frac{h}{3} \\
&= \frac{1}{2} \times 9800 \times 3.5 \times 1 \times \frac{1}{3} \\
&= 5.717 KNm
\end{aligned}$
$Ast=\frac{5 \cdot 77 \times 10^{6}}{130 \times 0.86 \times 185}=276 \mathrm{mm}^{2}$
$Ast_{min} = \frac{0.35}{100} \times 225 \times 1000 \times 787.5 mm^2$
$\text{Ast on each face = } 393.72$
$\therefore \text{provide #10mm @ 195mm c/c each face in verticle direction}$
Step 6: Provision of Haunches
It is customary to provide $150 \times 150mm$ haunches at junction at wall and base
Haunch ref of #10mm @ 195mm c/c is provided
Step 8: Design of base slab
Assume thck = 150mm
Provide #8mm @ 240 c/c in both direction