Step 1. Design Constants
Height of backfill above the ground = $4.5 \ m$
Density of soil = $\gamma = 18 KN/m^3$
Angle of repose = $\phi = 30˚$
SBC of soil = $q = 200 KN/m^3$
Coefficient of friction = $\mu = 0.45$
Grade of conc. M20 and steal Fe 415
$K_a = \frac{1 - sin \phi }{1 + sin \phi} = \frac{1- sin (30)}{1 + sin (30)} = \frac{1}{3}$
$K_p = 3$
Moment = $0.36 fck \ x b \ (d – 0.42x)$
$X_u$ limit = $0.48 d$ for Fe 415
$M_u$ limit = $0.138 fck \ bd^2$
Step 2. Preliminary design
Since in the question height above the G.L is given we need to calculate the Depth of Foundation.
$\therefore D.O.F = \frac{SBC}{\gamma} \times ka^2 = \frac{200}{18} \times (\frac{1}{3})^2 = 1.23 \simeq 1.3m$
$\therefore$ Total height of the retaining wall is 5.8m
$\therefore$ He = 5.8 m
Stem wall = $\frac{He}{15} \text{ to } \frac{He}{10} = \frac{5.8}{15} \text{ to } \frac{5.8}{10}$
$\therefore$ Provide the stem having depth 0.5m at the bottom which is reduced to 0.2m at the top.
Base width (b) = 0.55 He to 0.75 He = 3.19 to 4.35m
$\therefore$ provide Base width of 4.3m
Toe projection = $\frac{b}{3} = \frac{4.3}{3} = 1.43m$
Base slab thickness = $\frac{He}{15} \text{ to } \frac{He}{10} = 0.387 \text{ to } 0.58$
$\therefore$ Provide 0.5m
Heal projection = 4.3 – 1.43 – 0.5 = 2.37 m
Step 3. Lateral forces and overturning moment
Lateral force $(P_1)$ = Area of pressure distribution dia as shown.
$\therefore L.F = \frac{1}{2} \times (K_a \ rH) \times H$
$ = \frac{1}{2} \times \frac{1}{3} \times 18 \times 5.8 \times 5.8 = 100.92 KN$ ---------(1)
This force i.e. $P_1$ will act at height $\frac{H}{3}$ from bottom.
$\therefore \text{Lever arm distance} = \frac{5.8}{3} = 1.933$
Overturning moments = $100.92 \times \frac{5.8}{3} = 195.112 KNm$ --------(2)
Step 4. Gravity forces and Resisting moment
Assume the unit weight of concrete no. be $25 KN/m^3$ and 1m width.
Symbol |
Force (KN) |
Distance (m) from toe |
Moment (KNm) |
W1 |
$25 \times 1 \times 0.2 \times 5.3 = 26.5$ |
$1.43 + 0.3 + \frac{0.2}{2} = 1.83$ |
$48.5$ |
W2 |
$ \frac{1}{2} \times 0.3 \times 5.3 \times 1 \times 25 = 19.875$ |
$1.43 + \frac{2}{3} \times 0.3 = 1.63$ |
$32.4$ |
W3 |
$ 25 \times 4.3 \times 0.5 \times 1 = 53.75$ |
$\frac{4.3}{2} = 2.15 $ |
$115.56$ |
W4 |
$ 18 \times 1 \times 5.3 \times 2.37 = 226.1$ |
$4.3 - \frac{2.37}{2} = 3.115$ |
$704.3$ |
Total gravity forces = 326.225 KN ---------(3)
Total resisting moment = 900.76 KNm ------ (4)
Step 5. Check for stability
A] check for over turning -
$\frac{\text{Resisting moment}}{\text{overturning moment}} = \frac{\text{From 4}}{\text{From 2}} = \frac{900.76}{195.112} = 4.62 \gt 1.55 \therefore$ safe
B] check for sliding -
$\frac{u R_v}{R_H} = \frac{u \times \text{from 3}}{\text{from 1}} = \frac{0.45 \times 326.225}{100.92} = 1.45$
1.45 < 1.55 $\therefore$ UNSAFE
Since the sliding check has failed we will or we have to provide shear key.
C] Check against soil pressure -
Check for eccentricity -
Let $\mathbf{x}$ be the distance of point of application of the resultant.
$ x = \frac{\text{Net moment}}{\text{Gravity forces}} = \frac{4 – 2}{3} = \frac{900.76 – 195.112}{326.225} = 2.163 m$
Eccentricity (e) = $\frac{b}{2} = x = \frac{4.3}{2} - 2.163 = - 0.013$
Negative sign indicates that the resultant lies on the other side of center.
As per the cause
$ e \gt \frac{b}{6} = \frac{4.3}{6} 0.72 \therefore \text{Safe} $
Check for maximum and minimum pressure at toe sheer.
$ P_{max} = \frac{\sum W}{b} [ 1 + \frac{6e}{b} ] = \frac{326.225}{4.3} [ 1 + \frac{6 \times 0.013}{4.3}]$
$ 77.24 KN/m^3 \gt SBC = Q = 200 KN / m^3 \therefore \text{Safe}$
$ P_{min} = \frac{\sum W }{b} [ 1 - \frac{6e}{b}] = 74.5 \gt 0 \therefore \text{Safe}$
Step 6. Design of Toe Slab
A] Calculation of forces and moment on toe –
Upward pressure acting on the
$toe = (\frac{76.33 + 77.24}{2}) \times 1.43 = 109.8$
This pressure force will act at the C.G of pressure distribution dia.
$\therefore$ point of action = $(\frac{a+2b}{1+b}) \frac{1}{3} = (\frac{76.33 + (2 \times 77.24)}{76.33 + 77.24}) \frac{1.43}{3} = 0.7164m$
Self-weight of Toe slab
$\therefore force = 25 \times 1 \times 0.5 \times 1.43 = 17.875 KN$
Acting at = $\frac{1.43}{2} = 0.715$
$\therefore$ take moment of these forces towards the junction of toe and stem
$\therefore moment = (109.8 \times 0.7164) – (17.875 \times 0.715) = 65.88 KNm$
Ultimate moment = $98.82 KNm (65.88 \times 1.5)$
B] Check for depth -
Depth provided = 500 - 60 (cover = 60mm) = 440mm.
Depth required $d = \sqrt \frac{M}{0.138 fck \ b} = \sqrt \frac{98.82 \times 10^6}{0.138 \times 20 \times 1000}$
= 189.22 mm
$D_q \lt d$ provided $\therefore$ Safe.
C] Calculation of area of steel required -
$ Ast = \frac{0.5 fck}{fy} \bigg[ 1 - \sqrt{1 – (\frac{4.6 M}{fck \ bd^2})} \bigg] bd$
$ = \frac{0.5 \times 20}{415} \bigg[ 1 - \sqrt{(1 - \frac{4.6 \times 98.82 \times 10^6}{20 \times 1000 \times 440^2})} \bigg] 1000 \times 440 $
$= 641.8 mm^2$
Let’s provide bar of 12 mm $\phi$
$\therefore spacing = \frac{\frac{\pi}{4} \times 12^2}{641.8} \times 1000 = 176mm$
$\therefore \text{provide # 16mm @ 175mm c/c}$
Ast provided $= 646.27 mm^2$
D] Check for shear -
Shear at critical section which is at distance d from the junction is
$ = (\frac{76.61 + 77.24}{2}) (1.43 – 0.44) - [25 \times 1 \times 0.5 \times (1.43 - 0.44)]$
$\therefore$ shear at c.s = 63.78 KN
Ultimate shear = 95.67 KN
Shear taken by concrete
$V_c = \tau c \ bd$
% of steel = $\frac{646.27}{1000 \times 440} \times 100 0.146$
From IS 4562000 page 73 for $\tau c = 0.28$
$\therefore V_c = 0.28 \times 1000 \times 440 = 123.2 \times 10^3 N = 123.2 KN$
$\therefore$ since ultimate shear < shear taken by conc. $\therefore$ safe.
E] Distribution steal -
Generally 0.12% of gross section is provided
$\therefore$ D.S Ast = $\frac{0.12}{100} \times 1000 \times 500 = 600 mm^2$
$\therefore \text{provide # 10mm @ 130mm c/c}$
Step 7. Design of heal slab
A] Calculation of forces and moment
Upward pressure force = $(\frac{76.01 + 74.5}{2}) \times 2.37 = 178.35 KN$
Distance = $(\frac{76.01 + (2 \times 74.5)}{76.01 + 74.5}) \times \frac{2.37}{3} = 1.181 m$
self-weight of slab force = 25 x 1 x 0.5 x 2.37 = 29.625 KN
Acting at 1.185 m $(\frac{2.37}{2})$
Force or weight of soil above the heel
= 18 x 1 x 5.3 x 2.37 = 226.098 KN
Acting at 1.185 m
$\therefore$ Total vertical shear force = 77.4 KN
Ultimate shear = 116.1 KN
Total moment = 92.4 KN m
Total ultimate moment = 138.6 KN m
B] Check for depth -
d provided = 440 mm
$d = \sqrt\frac{138.6 \times 10^6}{0.138 \times 20 \times 1000} = 224.1 mm$
$D_{req} \lt d$ provided $\therefore$ safe.
C] Calculation of Ast -
$Ast = (\frac{0.5 \times 20}{415}) \times \bigg[ 1 - \sqrt{ 1 - \frac{4.6 \times 138.6 \times 10^6}{20 \times 1000 \times 440^2}} \bigg] 1000 \times 440 = 912.13 mm^2$
$\therefore$ provide 12mm dia ban
Spacing $= \frac{\pi / 4 \times 12^2}{92.13} \times 1000 = 123.99$
$\text{# 12mm @ 120mm c/c}$
$Ast \ prov = 942.5mm^2$
D] Check for shear -
Shear at critical section i.e. the junction of heel and stem = 116.1 KN
Shear taken by conctere = $\tau cbd$
$ \% = \frac{942.5}{1000 \times 440} \times 100 = 0.2142$
From IS Code $\tau c = 0.28$
$V_c = 123.2 KN$
Since shear at junction is less than shear taken by concrete $\therefore$ safe.
E] Distribution steel-
(0.12% of gross section) Same as toe
$\text{# 10mm @ 130mm c/c}$
Step 8. Design for stem
A] Force and moment
Lateral force = $\frac{1}{2} \times K_a \ rH \times H$
$= \frac{1}{2} \times \frac{1}{3} \times 18 \times 5.3^2 = 84.27 KN$
Acting at $= 1.77 (\frac{5.3}{3})$
$\therefore$ sheer = 84.27 KN
Ultimate sheer = 126.4 KN ultimate moment = 223.74 KNm
Moment = 149.16 KNm
B] Check for depth -
$ d = \sqrt \frac{m_v}{0.138 fck \ b} = 429.2 \lt 440 \therefore \text{safe}$
C] calculation of Ast
$Ast = (\frac{0.5 \times 20}{415}) \times \bigg( 1 - \sqrt{ \frac{4.6 \times 223.74 \times 10^6}{20 \times 1000 \times 440^2}} \bigg) 1000 \times 440$
Ast $1517.73 mm^2$
$\therefore$ provide 16mm $\phi$
$ Spacing = \frac{\pi /4 \times 16^2}{1517.73} \times 1000 = 132.5mm$
$\text{# 16mm @ 130mm c/c}$
Ast provided = 1546.63
D] Check for shear
Shear at junction = 126.4 KN
Shear resist by concrete
$ \% = \frac{1546.63}{1000 \times 440} \times 100 = 0.35$
$C_c = 0.36$
$V_c = 0.36 \times 1000 \times 440 = 158.4 KN$
$\therefore V_u \lt Vc \therefore safe$
E] Distribution steel -
Same as Toe $\text{# 10mm @ 130mm c/c}$
Step 9. Curtailment of ban in stem
$\frac{ASH}{Ast2} = \frac{1}{2} = \frac{y^2}{5.3^2}$
Y = 3.75m
But as per IS code bar has to be extended for 12 $\phi$ or d whichever is greater.
$\therefore$ y = 3.31 m $\therefore$ curtail bar from 3.3m from top
Step 10 - Design of shear key
Provide shear key of $0.5 \times 0.5m$
Lateral force = $\frac{1}{2} \times \frac{1}{3} \times 8 \times 6.3 \times 6.3 = 119.07 KN$
Additional weight of soil = $18 \times 4.3 \times 0.5 = 38.7 KN$
Total vertical force = 326.225 + 38.7 = 364.925 KN
Passive earth pressure $PP = k_p \times \text{depth of shear key} \times \text{upward pressure at junction of toe}$.
$= 3 \times 0.5 \times 76.33 = 114.5 KN$
Check for sliding
$\frac{\mu \sum W + P_p}{lateral force} = \frac{0.45 \times 364.92 + 114.5}{119.07}$
= 2.34 > 1.55 $\therefore$ Safe
Step 11. Reinforcement Diagram