Given:
Column size: $(300 \times 300 ) mm$
Column load: $1450 KN$
$S_{BC}$ of soil: 120m pq
M20
Fe415
Solution:
1] Load
$\begin{aligned}
\text{a) Total load on column } &= 4 \times 450 \\
&= 1800 KN \times 3 \\
&= 5400 KN \\
\text{} \\
\text{b) Self wt of footing } &= 10 \% \times 5406 \\
&= 540 KN \\
\text{} \\
\text{Total load } &= 5400 + 540 \\
&= 5940 KN \\
\end{aligned}$
2] Area of raft read
$\begin{aligned}
&= \frac{\text{Total Load}}{\text{SBC of soil}} \\
A &= \frac{5940}{120} \\
&= 49.5 m^2 \\
A & = L \times B \\
\text{} \\
\text{length of raft} &= 12 \times 4 = 48 m \\
\text{width of raft} &= \frac{A}{L} = \frac{49.5}{48} = 1.03 m \\
\text{width of raft B } &= 1.05 m \\
\text{} \\
Overhang &= \frac{1.05 - 0.3}{0.375 m}
\end{aligned}$
3] Calculation of upward pressure
$\begin{aligned}
\text{a) } W &= \frac{P}{\text{Area of raft}} \\
&= \frac{5400}{48 \times 1.05} \\
&= 107.14 KN/m^2 \\
\text{} \\
w_u &= 1.5 \times 107.14 \\
&= 160.71 KN/m \quad \text{ (Assume 1 m of width) } \\
\text{} \\
\text{b) } & \text{Calculation of moment} \\
m_u &= \frac{w_u \ a^2}{2} \\
&= \frac{160.71 \times 0.375^2}{2} \\
&= 11.3 KNm
\end{aligned}$
4] Calculation of depth
$\begin{aligned}
m_u &= mu_{max} = Ru_{max} \ bd^2 \\
d &= \sqrt{\frac{11.3 \times 10^6}{0.13 \times 20 \times 1000}} \\
&= 63.98 mm \sim 100 mm \\
D &= 100 + 50 = 150 mm
\end{aligned}$
5] Calculation of steel
$\begin{aligned}
Ast &= \frac{0.5 \ fck \ bd}{f_y} \left[ 1- \sqrt{1 - \frac{4.6 m_u}{fck \ db^2} } \right] \\
&= \frac{0.5 \times 20 \times 1000 \times 100}{415} \left[ 1 - \sqrt{1 - \frac{4.6 \times 11.3 \times 10^6}{20 \times 1000 \times 100^2} } \right] \\
&= 336.65 mm^2 \\
\text{} \\
Ast_{min} &= \frac{0.12}{100} \times 1000 \times 150 \\
&= 180 mm^2 \\
\text{} \\
Ast_{read} & \gt Ast_{min} \quad \therefore Safe \\
\text{Provide } & Ast_{req} \text{ use 12 mm } \phi \\
Spacing &= \frac{\pi / 4 \times 12^2}{336.65} \times 1000 \\
&= 335.95 \sim 300 mm \\
\text{Provide } & \text{ 12mm } \phi \text{ @ 300 mm c/c } \\
\end{aligned}$
Design of Beam over raft
a) Load transmitted on beam parameter run $ = 107.14 \times 1.05 = 112.497 KN/m$
Maximum bending moment $ = \frac{wl^2}{10}$
$m = \frac{112.49 \times 4^2}{10} = 179.99 KNm = 180 KNm $
$m_u = 1.5 \times 180 = 270 KNm$
b) Calculation of Depth
$d = \sqrt{\frac{270 \times 10^6}{0.138 \times 20 \times 3000}} = 571.04 mm$
So as to take care of shear stress
$D = 1.5 \times 571.04 = 856.56 mm$
$d = 875 - 50 = 825 mm$
C] Calculation of steel
$Ast = \frac{0.5 \times 20 \times 300 \times 825}{415} \left[ 1 - \sqrt{1 - \frac{4.6 \times 270 \times 10^6}{20 \times 300 \times 825}} \right] \\
= 988.88 mm^2$
Use 16 mm $\phi$
No. of bars $ = \frac{988.88}{\pi / 4 \times 16^2} = 4.91$
Provide 5 - 16 mm $\phi$
$Ast_p = 5 \times \pi / 4 \times 162 = 1005.3 mm^2$
d) Design of shear
$\begin{aligned}
\text{Shear coming on beam} &= 0.6 W_L \\
&= 0.6 \times 112.97 \times 4 \\
\text{} \\
V_D &= 271.12 \\
\text{} \\
V_{uD} &= 1.5 \times 271.12 \\
&= 406.68 KN \\
\text{} \\
V_{UC} &= \tau_{uc} \ bd \\
pt \% &= \frac{1005.3}{300 \times 825} \times 100 = 0.4
\end{aligned}$
by interpolating
$\begin{aligned}
\tau_{uc} &= 0.432 \\
V_{UC} &= 0.432 \times 300 \times 825 \\
&= 106.92 KN \lt V_{UD} \\
\therefore \quad & \text{S/F is required} \\
\text{} \\
V_{UD} = V_{UC} + V_{US} \\
V_{US} = 299.76 KN \\
\text{} \\
S_v &= \frac{0.87 \ fy \ Asv \ d}{V_{US}} \\
&= \frac{0.87 \times 415 \times 2 \times \pi / 4 \times 8^2 \times 825}{299.76 \times 103} \\
&= 99.89 mm \sim 90 mm
\end{aligned}$
Provide 2L - 8mm @ 90 mm c/c