Solution:
$l_y = 9m$
$l_x = 4m$
$\frac{l_y}{l_x} = \frac{9}{4} = 2.25 \gt 2$
One way continuous slab
Given:
Live load = $3 KN/m^2$
Partition load = $1 KN/m^2$
F.F = $0.6 KN/m^2$
M20 Fe415
beam = 250 mm
brick wall = 230 mm
1] Calculation of depth
$\begin{aligned}
d_{req} &= \frac{l_x}{\frac{l}{d} \times MF} \\
&= \frac{4000}{26 \times 1.4} \\
&= 109.89 \sim 120 mm \\
\text{} \\
D &= 120 + 20 + \frac{10}{2} \\
&= 145 mm
\end{aligned}$
2] Load calculation
i) Dead load
$\begin{aligned}
\text{a) s/w of slab } &= 25 \times D \\
&= 25 \times 0.145 \\
&= 3.625 KN/m^2 \\
\text{} \\
\text{Partition load} &= 1 KN/m^2 \\
\text{Floor finish} &= 0.6 KN/m^2 \\
&\quad \text{----------------} \\
&\quad \quad 5.225 KN/m^2 \\
\text{} \\
W_u D_L &= 1.5 \times 5.225 \\
&= 7.84 KN/m
\end{aligned}$
ii) Live load
$LL = 3 KN/m^2$
$W_{ULL} = 4.5 KN/m^2$
$D.L \quad \frac{+1}{12} \quad \frac{-1}{16} \quad \frac{1}{16} \quad \frac{-1}{12}$
$L.L \quad \frac{+1}{10} \quad \frac{-1}{9} \quad \frac{1}{12} \quad \frac{-1}{9}$
$\begin{aligned}
M_{u1} &= \frac{1}{12} \times 7.84 \times 4^2 + \frac{1}{10} \times 4.5 \times 4^2 \\
&= 17.65 KNm \\
\text{} \\
M_{uB} &= \frac{-1}{10} \times 7.84 \times 4^2 - \frac{1}{9} \times 4.5 \times 4^2 \\
&= -20.54 KNm \\
\text{} \\
M_{u2} &= \frac{1}{16} \times 7.84 \times 4^2 + \frac{1}{12} \times 4.5 \times 4^2 \\
&= 13.84 KNm \\
\text{} \\
M_{uc} &= \frac{-1}{12} \times 7.84 \times 4^2 + (\frac{-1}{9}) \times 4.5 \times 4^2 \\
&= -18.45 KNm
\end{aligned}$
4] Check for depth
$\begin{aligned}
mm_{max} &= Ru_{max} \ bd^2 \\
d &= \sqrt{\frac{20.54 \times 100}{0.138 \times 20 \times 1000}} \\
d &= 86.26 mm \lt 120 mm \\
\therefore \quad & \text{Safe in depth}
\end{aligned}$
5] Calculation of steel
a) Main steel
$\begin{aligned}
\text{1) } Ast_1 &= \frac{0.5 \times 20 \times 1000 \times 120}{415} \left[ 1- \sqrt{1- \frac{46 \times 176.5 \times 10^6}{20 \times 1000 \times 120^2}} \right] \\
&= 441.24 mm^2 \\
\text{} \\
Ast_{min} &= 174 mm^2 \\
\text{} \\
&\text{Use comm} \phi
\text{} \\
Spacing &= \frac{\pi / 4 \times 10^2}{441.24} \times 1000 \\
&= 177.99 mm \sim 150 mm \\
& \text{Use 10mm } \phi \text{ @ 150 mm} \\
\end{aligned}$
2) $Ast_B = 521.30 mm^2$
Provide 10mm $\phi$ 125 mm c/c
3) $Ast_2 = 339.53 mm^2$
Provide 10mm $\phi$ @ 200 mm c/c
4) $Ast_c = 463.14 mm^2$
Provide 10mm $\phi$ @ 150 mm c/c
b) Distribution steel
$Ast_{min} = 174 mm^2$
Provide 8 mm $\phi$ @ 275 mm c/c
$Ast_p = \frac{\pi/4 \times 10^2}{150} \times 1000 = 523.6 mm^2$
6] Check for deflection Page no 38 IS456
$\begin{aligned}
Fs &= 0.58 \times 415 \times \frac{441.29}{53.6} \\
&= 202.83 N/mm^2 \sim 24 N/mm^2 \\
\text{} \\
Pt \% &= \frac{523.6}{1000 \times 120} \times 100 \\
&= 0.436 \% \\
\text{} \\
MF &= 1.3 \\
\text{} \\
d &= \frac{4000}{26 \times 1.3} \\
&= 118.34 mm \lt 120 mm \\
\therefore \quad & \text{Safe in deflection}
\end{aligned}$
7] Check for shear
At B
$\begin{aligned}
V_{uB} &= \alpha_{DL} \times W_{UD} \times l_x + \alpha_u W_{ULL} \times l_x \\
&= 0.6 \times 7.84 \times 4 + 0.6 \times 7.84 \times 4 \\
&= 37.63 KN \\
\text{} \\
V_{uD} &= V_{uB} = 37.63 KN \\
\text{} \\
V_{uc} &= k \ \tau_{UC} \ bd \\
k &= 1.3 \ (for \ d \le 150) \\
\text{} \\
Pt \% &= \frac{Ast}{bd} \times 100 \\
&= \frac{521.30}{1000 \times 120} \times 100 \\
&= 0.43 \\
\text{} \\
0.25 &- 0.36 \\
0.43 &- 1 \\
0.50 &- 0.48 \\
\text{} \\
\tau_{uc} &= 0.4120 N/mm^2 \\
\text{} \\
V_{uc} &= k \ \tau_{uc} \ bd \\
&= 1.3 \times 0.421 \times 1000 \times 120 \\
&= 65.67 KN \gt V_{UD} = 37.63 KN\\
\therefore \quad & \text{Safe in shear}
\end{aligned}$
8] Check for development length
$\begin{aligned}
Ld &= \frac{0.87 f_y \phi}{4 \tau_{bd}} \\
&= \frac{0.87 \times 415 \times 10}{4 \times 1.2 \times 1.6} \\
&= 470.11 mm \\
\text{} \\
M_1 &= \frac{17.65}{2} = 8.825 KN \\
\text{} \\
V_A &= 21.9 KN \\
\text{} \\
l_o &= 12 \phi \text{ or d}\\
&= 120 mm \\
&= 644.03 mm \\
\text{} \\
L_d & \lt \frac{1}{3} \frac{M_1}{V} + l_s
\end{aligned}$