A] Design of slab S1
$l_y = 5m$
$l_n =4m$
$\frac {l_y}{l_n} = \frac{5}{4} = 1.25 \lt 2$
$\therefore$ Two way continuous slab
1) Depth Calculation
$d_{read} = \frac{l_x}{\frac{l}{2} \times M.F }$
= $\frac{4000}{26 \times 1.4}$
= $109.89 mm$
$d_{req} \approx 120mm$
Overall Depth
$D = d + c.c + \frac{\phi}{2} $
= $120 +20+\frac{10}{2}$
D = 145 mm
2) Load Calculation
a) s/w of slab = $25 \times D$
= $25 \times 0.145 = 3.625 kN/m^2$
b) Live load = $3 kN/m^2$
c) Floor Finish = $\frac {1.5 kN/m^2}{w = 8.124 kN/m^2}$
$w_u = 1.5 \times 8.125$
$w_u = 12.18 kN.m$
3) Calculation of B.M Coefficient
$\frac{l_y}{l_n} = 1.25$
$\alpha_x = 0.075$ and $\alpha_y= 0.056$
$M_{ux}= \alpha_x \times w_u \times l_n^2$
= $0.075 \times 12.18 \times 4^2$
$M_{ux}= 14.616 kN.m$
$M_{uy}= 0.056 \times 12.18 \times 4^2$
$M_{uy}= 10.91 kN.m$
4) Check for depth
$d = \sqrt{\frac{14.616 \times 10 ^6}{20 \times 1000 \times 0.138}}$
$d = 72.72 mm \lt 120mm$
$\therefore $ safe in depth
5) Calculation of steel
a) Astx = ?
$Astx =\frac{0.5 \times 20 \times 1000 \times 120}{415}
[1- \sqrt{1-\frac{4.6 \times 14.616 \times 10^6}{20 \times 1000 \times 120^2}}]$
$Astx = 359.91 mm^2$
$Ast_{min} = \frac{0.12}{100} \times 1000 \times 145$
$Ast_{min} = 174 mm^2$
$Ast_x \gt Ast_{min} $
Use $Astx = 359.91 mm^2$
use 10 mm $\phi$ bar
$Spacing = \frac{\frac{\pi}{4} \times 10^2}{359.91} \times 1000$
= $218.22$
$\approx 200 mm$
Provide 10 mm $\phi$ bar @ 200 mm c/c
b) Asty = ?
$M_{uy} = 10.91 kN.m$
$Astx =\frac{0.5 \times 20 \times 1000 \times 120}{415}
[1- \sqrt{1-\frac{4.6 \times 10.91 \times 10^6}{20 \times 1000 \times 120^2}}]$
$Asty = 263.98 mm^2$
$Ast_y \gt Ast_{min} $
use 10 mm $\phi$ bar
$Spacing = \frac{\frac{\pi}{4} \times 10^2}{263.98} \times 1000$
= $297.73$
$\approx 275 mm$
Provide 10 mm $\phi$ bar @ 275 mm c/c
6) Check for shear
1) $Vux = 0.076 \times 12.18 \times 4 = 3.65 kN$
2) $Vuy = 0.056 \times 12.18 \times 4 = 2.72 kN$
$Vuc = k \tau_{uc} \ bd$
$k =1.3 for d \ lt 150 mm$
$A_{stp} = \frac{\frac{\pi}{4} \times 10^2}{200} \times 1000 = 392.7 mm^2$
%$pt = \frac{392.7}{1000 \times 120} \times 100$
$\tau_{uc} = 0.396$
$Vuc = k \tau_{uc} bd$
$1.3 \times 0.396 \times 1000 \times 120$
$Vuc = 61.77 kN \gt 3.656 kN$
$\therefore $Safe in shear
7) Check for deflection
$F_s = 0.58 f_y \frac{Ast_{req}}{Ast_d}$
= $ 0.58 \times 415 \times \frac{359.91}{392.7}$
$F_s =220.6$
$\approx 240 N/mm^2$
%$pt = 0.327$
M.F = 1.5
$d = \frac{4000}{26 \times 1.6} = 102.56 \lt 120mm$
$\therefore$ Safe in deflection
7) Check for development length
$Ld \leq 1.3 \frac{M_1}{V} + l_o$
$M_1 = 14.616 kN.m$
$V = 3.65 kN$
$l_o = 12 d or d$
$l_o = 120 mm$
$\therefore RHS = 5325.66 \ mm$
$LHS = \frac{0.87 f_y}{4 \tau bd}$
= $ \frac {0.87 \times}{4 \times 1.2 \times 1.8}$
= 470.11mn
$\therefore RHS \gt LHS$
Safe in development length
B) Beam design $B_1$
1) Load Calculation
a) Load transformed by Slab S1
= $\frac{w_u l_x}{2}[1-\frac{1}{3 \beta^2}]$
= $\frac{12.18 \times 4}{2}[1-\frac{1}{3 \times 1.25^2}]$
= $19.16kW/m$
b) Wall load = $1.5 \times l \times b \times h$
$1.5 \times 20 \times 0.23 \times 3.2$
= $22.08 kN/h$
C) S/W of beam = 10% (a+b)
= 10% (19.16 + 22.08)
= 4.124 kN/m
= $w_u = 45.364 kN/n$
$V_A =V_B = \frac{45.36 \times 5}{2} = 113.41$
midspan AB
$M_u =141.76 kN.m$
$b_f = \frac{l_o}{6} + 6 D_f + bw$
$\frac{0.7 \times 5000}{6} + 6 \times 145 + 230$
$1683.33 mm$
$D = \frac{5000}{10}$
$D = 500 mm$
$d = 500-25 = 475 mm$
Assume $x \leq D_f$
$Mu_r = 0.36 Fc_k x_u b_f (d-0.42 xl)$
=$0.36 \times 20 \times 145 \times 1683.33 (475-0.42 \times 145)$
$Mu_r = 727.73 \gt 14176 kN$
Assumption is correct
$Ast_1 =\frac{0.5 \times 20 \times 230 \times 475}{415}
[1- \sqrt{1-\frac{4.6 \times 141.76 \times 10^6}{20 \times 1000 \times 470^2}}]$
$Ast = 1027.54 mm^2$
Use 20 mm $\phi$ bar
No. of Bar = $\frac{1027.54}{\frac{pi}{4} \times 20^2}$
= $3.27$
$\approx 4 Nos$
Provide 4 -20 mm $\phi$ bars
Design of shear reinforcement
$Vu_D = 113.41 kN$
$D Vu_c= \tau_{uc} bd$
$Ast = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 mm^2$
%$pt = \frac{Ast}{bd} \times 100$
%$pt = 1.16$
$\tau_{uc} 0.652$
$Vu_c = \tau_{uc} bd$
= $0.652 \times 230 \times 475$
$Vu_c = 71.23 kN$
$Vu_s = Vu_D- Vu_c$
= $113.41-71.23$
$Vu_s = 42.18 kN$
$Vu_s = Vu_{sv} = 42.18 kN$
$S_v = \frac{0.87 F_y As_v d}{Vu_{sv}}$
$S_v = \frac{0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 8^2 \times 475 }{42.18 \times 10^3}$
= $402.82$
$\approx 300 mm$
$\therefore$ 2L-8mm $\phi$ 300 mm c/c