written 5.9 years ago by | • modified 4.6 years ago |
a) Draw a dog legged staircase.
b) Draw the plan showing flight details, mid-landings etc. Draw reinforcement details in a flight.
written 5.9 years ago by | • modified 4.6 years ago |
a) Draw a dog legged staircase.
b) Draw the plan showing flight details, mid-landings etc. Draw reinforcement details in a flight.
written 5.7 years ago by | • modified 5.7 years ago |
Given:
height = 3.2m
dimension = $3m \times 5m$
M20 Fe415
Solution:
1] Design Constant
$f_{ck} = 20 N/mm^2$
$f_y = 415 N/mm^2$
2] Design Parameter
Height = 3.2 m
Each flight = 1600 mm
$\therefore$ provide rise = 10 each 160mm
$\therefore$ treads = 9 each 250mm
$\therefore$ Plan is
3] effective span and depth
Less for $I^{st} = 2.25 + 1.375 = 3.625 m$
Less for $II^{nd} = 5m$
$d = \frac{Less}{B_v mf}$ ($B_v = 20$ fixed and $mf = 1.35$ for % of steal = 0.4%)
$\therefore d = \frac{5000}{20 \times 1.35} = 185.18 mm$
assume $d = 200 mm \quad D = 225 mm$ (cover 25mm)
4] Load calculations:
(R = Riser = 0.16m, T = Tread = 0.25m)
i) On goeing
$\begin{aligned} S.W.S &= 25 \times \frac{0.225 \sqrt{0.16^2 + 0.25^2}}{0.25} \bigg( \frac{250 \sqrt{R^2 + T^2}}{T} \bigg) \\ &= 6.678 \end{aligned}$
$S.W. Step = 2\big( \frac{25R}{2} \big) \quad LL = 3 \quad FF = 1$
Total load = 12.678
UL = 19.017 kN/m
II) On slab / landing (25 X D)
$SW = 25 \times 0.225 = 5.625 \quad LL = 3 \quad FF=$
$TL = 9.625 kN/m$
$\therefore$ Total ultimate = 14.437
5] BM calculations
Case 1:
$R_A+R_B=62.64$
$R_A = 33.274 \ KN$
$R_B = 29.366 \ KN$
$\therefore \quad M_{max} =29.11 \mathrm{kNm}$
Case 2:
$\therefore \quad M_{max} = 55.1 \mathrm{kNm}$
6] Check for depth
$d^2 = \frac{55.1 \times 10^6}{0.138 \times 20 \times 1000} \left( \frac{M}{0.138 fck \ b} \right)$
$d = 141.3 mm \lt d_{pro} = 200 mm \therefore Safe$
7] Calculation of Reinforcement
For Fight (I)
$M = 29.11 KNm$
$Ast =\frac{0.5 \times 20}{415}\left[1- \sqrt{ 1 - \frac{4.6 \times 29.11 \times 10^{6}}{20 \times 1000 \times 200^{2}}} \right] 1000 \times 200$
$Ast = 421.79 mm^2$
$\therefore$ provide 10mm $\pi$ @ 185mm c/c
$\text{Ast provided} = 424.54 mm^2$
For flight (II)
$M = 55.1 KNm$
Ast = $835.93 mm^2$
$\therefore$ provide 12mm $\phi$ @ 130mm c/c
$\text{Ast provided} = 870 mm^2$
Distribution steel:
$0.12 \% bd = 240 mm^2$
8mm $\phi$ @ 205 mm c/c
8] Check for deflection
$\text{% of steel} = \frac{870}{1000 \times 200} \times 100 \left( \frac{\text{Ast provided}}{bd} \right)$
$0.435 \not{\lt} 0.4$
Detail check
$f_s = 231.274 \quad mf = 1.3$
$d = \frac{5000}{20 \times 1.3} = 192 \lt 200 \therefore Safe$
9] Check for shear
Consider 19.017 through out span
$Vu_{max} = \frac{wl}{2} = \frac{19.017 \times 5}{2} = 47.54 KN$
$\tau_v = 0.2377 \quad (Vu_{max} \times b \times d)$
For D = 225mm $\quad$ K = 1.15 from IScode
$\tau_e = K \tau_c$
$1.15 \times 0.28 = 0.322 \quad \therefore Safe$
10] Development
$L_d = \frac{0.87 \times 1115 \times 12}{4 \times 1.2 \times 1.6} = 564.14 (\frac{0.87 fy \phi}{4 \tau_D d})$
$ = \frac{1.3 \times 27.55 \times 10^6}{117.54 \times 1.^3} + 100 = 853.4 \quad \therefore Safe$