1. Given:
Hall dimension: $3m \times 6m$
Floor to Floor height: $3.5m$
Brick wall: $230mm$
M20 concrete
Fe 415 Steel
Assume: Floor finish = 1 and Liveload = $3 kN/m$
Floor to floor height = $3.5m$
Floor to floor height / Flight = $\frac{3.5}{2} = 1.75 = 1750 mm$
Assume Riser $=160 \mathrm{mm}$
No. of riser $=\frac{1710}{160}=10.93 \approx 11 \text{ Nos.}$
$T=R-1 = 11-1 = 10 \text{ Nos.}$
Assume Tread T $=250 \mathrm{mm}$
$\begin{aligned}
\text{Going} &= \text{No. of tread} \times \text{Dimension of Tread} \\
&= 10 \times 250 \\
&= 2.5 mm
\end{aligned}$
$\begin{aligned}
\text { width of landing } &= 5000-2500 \\
&=120 \mathrm{mm}
\end{aligned}$
2. Calculation of effective length
Flight 1 -
$\begin{aligned}
L_{eff} &= 2500 + 1250 + \frac{230}{2} - \frac{250}{2} \\
&= 3740 mm \\
&= 3.74 m
\end{aligned}$
Flight 2 -
$\begin{aligned}
L_{eff} &= 1250 + 2500 + 1250 + \frac{230}{2} + \frac{230}{2} \\
&= 5230 mm \\
&= 5.23 m
\end{aligned}$
3. Depth Calculation
$\begin{aligned}
d_{req} &= \frac{L_{eff}}{\left( \frac{L}{d}\right)_b \times M.F}\\
&= \frac{5230}{20 \times 1.4} \\
&= 186.78 mm \sim 200 mm
\end{aligned}$
Overall depth
$D = d + c.c. + \frac{d}{2} = 200 + 20 + \frac{b}{2} = 225 mm$
4. Load calculation
a) Flight 1 -
$\begin{aligned}
\text{s/w of slab} &= 25 \times D \times sec \ d \\
&= 25 \times D \times \frac{\sqrt{R^2 + T^2}}{T} \\
&=25 \times 0.225 \times \frac{\sqrt{160^{2}+250^{2}}}{280} \\
&= 6.68 KN/m^2
\end{aligned}$
$\begin{aligned}
\text { weight of steps } &=\frac{R}{2} \times 25 \\
&= \frac{0.160}{2} \times 25 \\
&= 2 KN/m^2
\end{aligned}$
$\text{Floor Finish} = 1 KN/m^2 \text{ ...Assume}$
$\text{Live load} = 8 KN/m^2 \text{ ...Assume}$
$T.L = 12.68 KN/m^2$
$\begin{aligned}
w_u = 1.5 \times 12.68 = 19.02 KN/m \text{ ...Assume } L_m \text{ of strip}
\end{aligned}$
b) Mid landing
$\begin{aligned}
\text{Self wt of slab} &= 25 \times D \\
&= 25 \times 0.225 \\
&= 5.625 KN/m^2 \\
FF &= 1 KN/m^2 \\
LL &= 3 KN/m^2 \\
TL &= 9.6 KN/m^2
\end{aligned}$
$w_u = 1.5 \times 9.625 = 14.13 KN/m \text{ ... Assuming } L_m \text{ of strip}$
$\sum M_a A = 0$
$19.02+\frac{2.375^{2}}{2}+14.43 \times 1.365 \times \left( 2.375 + \frac{1.365}{2} \right) - V_B \times 3.74 = 0 $
$V_B = 30.45 KN$
$\sum F_y = 0$
$v_{A}-19.02 \times 2.375-14.43 \times 1.365+30.45=0$
$V_{A} = 34.42 KN$
S.F.D -
$A_{L} = 0$
$A_R=34.42 \mathrm{KN}$
$C = 34.42 - 19.02 \times 2.375 = -10.77 \mathrm{KN}$
$B_{L} = -10.77-14.43 \times 1.365=-30.45 \mathrm{KN}$
$B_{R} = -30.45+30.45=0$
$\frac{34.42}{\eta}-\frac{10.77}{2.375-\eta}$
B.M.D -
$M_A = 0$
$M_C = 30.45 \times 1.365-14.43 \times \frac{1.365}{2} \times \frac{1.365}{2} = 28.12 \ KN$
$M_D = 34.42 \times 1.81 - 19.02 \times \frac{1.81^2}{2} = 31.14 KNm$
$$V_u = 34.42 KN$$
$$M_u = 31.14 KNm$$
Check for depth
$\begin{aligned}
Mu_{max} &= Ru_{max} \ bd^2 \\
d &= \sqrt{\frac{Mu_{max}}{Ru_{max} \ b}} \\
&= \sqrt{\frac{31.14 \times 10^6}{0.138 \times 20 \times 1000}} \\
&= 106.21 mm \lt 200 mm \\
\therefore \quad & \text{ Safe in depth}
\end{aligned}$
Calculation of steel
a) Main Steel
$Ast = \frac{0.5 \ fck \ bd}{fy} \left[ 1 - \sqrt{1 - \frac{4.6 M_y}{fck \ db^2}} \right]$
$Ast = \frac{0.5 \times 20 \times 1000 \times 200}{415} \left[ 1 - \sqrt{1 - \frac{4.6 \times 31.14 \times 10^6}{20 \times 1000 \times 200^2}} \right]$
$Ast = 452.72 mm^2$
$\begin{aligned}
Ast_{min} &= 0.12\% bD \\
&= \frac{0.12}{100} \times 1000 \times 225 \\
&= 270 mm^2
\end{aligned}$
$Ast_{min} = Ast$
$\text{Provide Ast = 452.72} mm^2$
$Use \ 12mm \phi$
$Spacing = \frac{\pi / 4 \times 12^2}{452.72} \times 1000 = 249.81$
$\therefore$ Use 12mm d @ 225 mm c/c
$Ast_p = \frac{\pi / 4 \times 12^2}{225} \times 1000 = 502.65 mm^2$
b) Distribution steel
$Ast_{min} = 270 mm^2$
Use 10mm $\phi$
$Spacing = \frac{\pi / 4 \times 10^2}{270} \times 1000 = 290.78 \sim 275 mm$
Use 10 mm $\phi$ @ 275 mm c/c
Check for shear
$\begin{aligned}
V_{ue} &= \tau \ bd \\
pt\% &= \frac{Ast_p}{bd} \times 100 \\
&= \frac{502.65}{1000 \times 200} \times 100 \\
&= 0.25
\end{aligned}$
$$ 0.25 - 0.36 N/mm^2 $$
$$ \tau_{uc} = 0.36 N/mm^2 $$
$\begin{aligned}
V_{uc} &= \tau_{uc} \times b \times d \\
&= 0.36 \times 1000 \times 200 \\
&= 72 KN \gt V_{UD} \\
\therefore \quad & \text{Safe in shear}
\end{aligned}$
B] Design of Flight 2
$R_E=R_F=\frac{19.43 \times 1.365+19.02 \times 2.5+14.43 \times 1.365}{2}$
$R_E=R_F= 43.47 KN$
S.F.D -
$E_L = 0$
$E_R = 43.47 KN$
$G = 43.47 - 14.43 \times 1.365 = 23.775 \ KN$
$H = 23.775 - 19.02 \times 2.5 = -23.775 \ KN$
$F_L = -23.775 - 14.43 \times 1.365 = -43.47 \ KN$
$F_R = -43.47 + 43.47 = 0 \ KN $
B.M.D -
$M_E = 0$
$M_F = 43.47 \times (1.365 + 1.25) - 14.43 \times (1.365) \times (\frac{1.365}{2} + 1.25) - 19.02 \times \frac{1.25^2}{2} = 60.75 KNm$
$MF = 0$
Check for depth
$M_u = M_I = 60.75 KNm$
$d = \sqrt{\frac{60.75 \times 10^6}{0.138 \times 20 \times 1000}}$
$d = 148.36 mm \gt 200 mm$
$\therefore \quad Safe in depth$
Calculation of steel
a) Main Steel
$Ast = \frac{0.5 \times 20 \times 1000 \times 200}{415} \left[ 1- \sqrt{1 - \frac{4.6 \times 60.75 \times 10^6}{20 \times 1000 \times 200^2} }\right]$
$Ast = 931.78 mm^2$
$\begin{aligned}
Ast_{min} &= 0.12\% bD \times (\text{Tor Steel}) \\
&= \frac{0.12}{100} \times 1000 \times 225 \\
&= 270 m^2 \\
Ast &\gt Ast_{min} \\
Provide \ Ast &= 931.78 mm^2 \\
\end{aligned}$
Use 12mm $\phi$ bar
$Spacing = \frac{\pi / 4 \times 12^2}{831.78} \times 1000 = 121.37$
Use 12mm $\phi$ @ 110 mm c/c
$\therefore Asp = \frac{\pi / 4 \times 12^2}{110} \times 1000 = 1028.16 mm^2$
b) Distribution steel
$Ast_{min} = 270 mm^2$
Use 10mm $\phi$
$Spacing = \frac{\pi / 4 \times 10^2}{270} \times 1000 = 290.98 \sim 275 mm$
Provide 10mm $\phi$ @ 275 mm c/c
Check for shear
$V_{uc} = \tau_{uc} bd$
$\begin{aligned}
Pt \% &=\frac{Ast_P}{b a} \times 100 \\
&= \frac{1028.15}{1000 \times 200} \times 100 \\
&= 0.51
\end{aligned}$
$\tau_{uc} = 0.48 N/mm^2$
$\begin{aligned} V_{uc} &=0.488 \times 1000 \times 200 \\ &=97.6 \mathrm{kN} \gt \mathrm{V} \end{aligned}$
$\therefore \text{ Safe in shear}$