1
4.5kviews
A door in a tank is in the form of quadrant of a cylinder of 1.5 m radius and 8 m wide. Calculate the resultant force on the door and its location.
1 Answer
1
325views
written 5.8 years ago by |
Data: Radius=1.5 m, Width=8 m
To find: Resultant force ($F_{A}$)=?, Location=$\theta$
a)Horizontal component ($F_{X}$)
$F_{X}=w_{w}.A.\bar{h}$
Here, $\bar{h} =\cfrac{1.5}{2}=0.75 m$
A=$1.5 \times 8 =12 m^{2}$
$w_{w}=9810 N/m^{2}$
∴$F_{X}=9810 \times 12 \times 0.75 = 88.29 \times 10^{3}$ N
b) Vertical component ($F_{Y}$)
$F_{Y}=w_{w} \times \text{cls area of ABC} \times width of door = w_{w} \times \cfrac{\pi}{4} \times 1.5^{2} \times 8 = 138.685 \times 10^{3} N$
Now, Resultant force is = R = $\sqrt{F_{X}^{2}+F_{Y}^{2}} = \sqrt{(88.29 \times 10^{3})^{2}+(138.685 \times 10^{3})^{2}} = 164.68 \times 10^{3}$ N
$\theta = tan^{-1} \left( \cfrac{F_{Y}}{F_{X}} \right) = 57.51^{\circ}$
ADD COMMENT
EDIT
Please log in to add an answer.