written 6.2 years ago by | • modified 6.1 years ago |
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Frequency Domain
Difficulty : High
Marks : 10M
written 6.2 years ago by | • modified 6.1 years ago |
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Frequency Domain
Difficulty : High
Marks : 10M
written 6.1 years ago by | • modified 6.1 years ago |
Given ⟹G(s)⋅H(s)=10s(s+1)(s+5)
Step 1⟹ First bring the given G(s) into standard time constant form.
G(s)⋅H(s)=10s(s+1)5(1+s5)
G(s)⋅H(s)=2s(s+1)(1+s5)
Step 2⟹ To convert it into frequency domain replace 's' by jω.
G(jω)⋅H(jω)=2jω(jω+1)(1+jω5)
Step 3⟹ In the given transfer function following factors are present,
i) Constant, k=2
∴20logk=20log2=6.02dB
ii) Pole at origin ⟹1jω
iii) First order pole ⟹11+jω
∴ωc1=1
iv) First order pole ⟹11+jω5
∴ωc2=5
Step 4⟹
Serial No. | Factor | Magnitude curve | Phase curve |
---|---|---|---|
1 | k=2 | straight line at 6.02 dB | ϕ=0∘ |
2 | 1jω | straight line of slope -20dB/dec passing through ω=1,0dB point | ϕ=90∘ |
3 | 11+jω | Line slopes are: 1) 0dB/dec for ω≤1 2) -20dB/dec for ω>1 | ϕ=tan−1(ω) for all values of ω |
4 | 11+jω5 | Line slopes are: 1) 0dB/dec for ω≤5 2) -20dB/dec for ω>5 | ϕ=tan−1(ω) for all values of ω |
Step 5⟹ Magnitude plot
Serial No. | Factor | Resultant slope | Start point (ω) | End point (ω) |
---|---|---|---|---|
1 | k=2 | straight line at 6.02 dB | 0.1 | ∞ |
2 | 1jω | -20dB/dec | 0.1 | 1 |
3 | 11+jω | -20dB/dec+(-20dB/dec)=-40dB/dec | 1 | 5 |
4 | 11+jω5 | -40dB/dec+(-20dB/dec)=-60dB/dec | 5 | ∞ |
Step 6⟹ Phanse angle
ϕ(ω)=−90+(−tan−1ω)+(−tan−1ω5)
ω | 1jω | −tan−1ω | −tan−1ω5 | ϕ(ω) |
---|---|---|---|---|
0.1 | −90∘ | −5.71∘ | −1.145∘ | −96.85∘ |
0.5 | −90∘ | −26.56∘ | −5.71∘ | −121.66∘ |
1 | −90∘ | −45∘ | −11.3∘ | −146.3∘ |
10 | −90∘ | −84.28∘ | −63.43∘ | −237.71∘ |
100 | −90∘ | −89.42∘ | −87.13∘ | −266.55∘ |
500 | −90∘ | −89.88∘ | −89.42∘ | −269.3∘ |
1000 | −90∘ | −89.94∘ | −89.71∘ | −269.65∘ |
Step 7⟹ Bode plot is as shown in figure. From the bode plot
i) Gain margin=12dB
ii) Phase margin=15∘
iii) Gain cross over frequency=ωgc=1.4rad/sec
iv) Phase cross over frequency=ωpc=2.7rad/sec
Since the gain margin and the phase margin are both positive, so the given system is stable.