0
7.2kviews
Construct the bode plot for the following Transfer function. Comment on stability. G(s).H(s) = $\frac{10}{s(s+1)(s+5)}$ .

Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems

Topic: Stability Analysis in Frequency Domain

Difficulty : High

Marks : 10M

1 Answer
1
478views

Given $\Longrightarrow G(s)\cdot H(s)=\cfrac { 10 }{ s(s+1)(s+5) }$

Step 1$\Longrightarrow$ First bring the given G(s) into standard time constant form.

$G(s)\cdot H(s)=\cfrac { 10 }{ s(s+1)5\left( 1+\cfrac { s }{ 5 } \right) } $

$G(s)\cdot H(s)=\cfrac { 2 }{ s(s+1)\left( 1+\cfrac { s }{ 5 } \right) } $

Step 2$\Longrightarrow$ To convert it into frequency domain replace 's' by $j\omega$.

$G(j\omega )\cdot H(j\omega )=\cfrac { 2 }{ j\omega (j\omega +1)\left( 1+\cfrac { j\omega }{ 5 } \right) }$

Step 3$\Longrightarrow$ In the given transfer function following factors are present,

i) Constant, k=2

$\therefore 20 \log{k}=20 \log{2}=6.02dB$

ii) Pole at origin $\Longrightarrow \cfrac{1}{j \omega}$

iii) First order pole $\Longrightarrow \cfrac{1}{1+j \omega}$

$\therefore \omega_{c1}=1$

iv) First order pole $\Longrightarrow \cfrac{1}{1+\cfrac{j \omega}{5}}$

$\therefore \omega_{c2}=5$

Step 4$\Longrightarrow$

Serial No. Factor Magnitude curve Phase curve
1 k=2 straight line at 6.02 dB $\phi=0^{\circ}$
2 $\cfrac{1}{j\omega}$ straight line of slope -20dB/dec passing through $\omega=1,0$dB point $\phi=90^{\circ}$
3 $\cfrac{1}{1+j\omega}$ Line slopes are: 1) 0dB/dec for $\omega \leq 1$ 2) -20dB/dec for $\omega \gt 1$ $\phi=\tan^{-1}{(\omega)}$ for all values of $\omega$
4 $\cfrac{1}{1+\cfrac{j\omega}{5}}$ Line slopes are: 1) 0dB/dec for $\omega \leq 5$ 2) -20dB/dec for $\omega \gt 5$ $\phi=\tan^{-1}{(\omega)}$ for all values of $\omega$

Step 5$\Longrightarrow$ Magnitude plot

Serial No. Factor Resultant slope Start point ($\omega$) End point ($\omega$)
1 k=2 straight line at 6.02 dB 0.1 $\infty$
2 $\cfrac{1}{j\omega}$ -20dB/dec 0.1 1
3 $\cfrac{1}{1+j\omega}$ -20dB/dec+(-20dB/dec)=-40dB/dec 1 5
4 $\cfrac{1}{1+\cfrac{j\omega}{5}}$ -40dB/dec+(-20dB/dec)=-60dB/dec 5 $\infty$

Step 6$\Longrightarrow$ Phanse angle

$\phi(\omega)=-90+(-\tan^{-1}{\omega})+(-\tan^{-1}\cfrac{\omega}{5})$

$\omega$ $\cfrac{1}{j\omega}$ $-\tan^{-1}{\omega}$ $-\tan^{-1}{\cfrac{\omega}{5}}$ $\phi(\omega)$
0.1 $-90^{\circ}$ $-5.71^{\circ}$ $-1.145^{\circ}$ $-96.85^{\circ}$
0.5 $-90^{\circ}$ $-26.56^{\circ}$ $-5.71^{\circ}$ $-121.66^{\circ}$
1 $-90^{\circ}$ $-45^{\circ}$ $-11.3^{\circ}$ $-146.3^{\circ}$
10 $-90^{\circ}$ $-84.28^{\circ}$ $-63.43^{\circ}$ $-237.71^{\circ}$
100 $-90^{\circ}$ $-89.42^{\circ}$ $-87.13^{\circ}$ $-266.55^{\circ}$
500 $-90^{\circ}$ $-89.88^{\circ}$ $-89.42^{\circ}$ $-269.3^{\circ}$
1000 $-90^{\circ}$ $-89.94^{\circ}$ $-89.71^{\circ}$ $-269.65^{\circ}$

Step 7$\Longrightarrow$ Bode plot is as shown in figure. From the bode plot

i) Gain margin=12dB

ii) Phase margin=15$^{\circ}$

iii) Gain cross over frequency=$\omega_{gc}=1.4 rad/sec$

iv) Phase cross over frequency=$\omega_{pc}=2.7 rad/sec$

Since the gain margin and the phase margin are both positive, so the given system is stable.

enter image description here

Please log in to add an answer.