written 5.9 years ago by | • modified 5.9 years ago |
H(s) = 1
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Frequency Domain
Difficulty : High
Marks : 10M
written 5.9 years ago by | • modified 5.9 years ago |
H(s) = 1
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Frequency Domain
Difficulty : High
Marks : 10M
written 5.9 years ago by | • modified 5.8 years ago |
Given => $\frac{288(s+4)}{s(s+1)(s^2 +4.8s +144)}$
step I => Bring equation in the standard fims constant form
G(s)H(s) = $\frac{288*4*(\frac{s}{4} +1)}{144s(s+1)(\frac{s^2}{144} + \frac{4.8s}{144}+1)}$
Step 2 => Get freq domain transfer function s=jw,
GH(jw) = $\frac{288*4*(\frac{jw}{4} +1)}{144jw(jw+1)(1+ j0.033w-\frac{w^2}{144}}$
GH(jw) = $\frac{8*(\frac{jw}{4} +1)}{jw(jw+1)(1+ j0.033w-\frac{w^2}{144}}$
Comparing the quadrate pole with standard equation,
1 + 2jw$\epsilon \frac{w}{w_n}$ - $\frac{w^2}{w_{n^2}}$ = 1 + j0.033w - $\frac{w^2}{144}$
=> $w^2_n$ = 144
w= 12
$w_c - w_n$ = 12
similarly $\frac{2{\epsilon}_1}{w_n}$ = 0.033
${\epsilon}_1$ = 0.2
The correction magnitude at $w_n$ = 12 will be -20log$(4{\epsilon}^2_1)^\frac{1}{2}$ = 7.45 dB
step 3 => i) constant k=8 i.e. 20 logk = 18.06 dB
ii) pole at origin $\frac{1}{jw}$
iii) first order pole $\frac{1}{1+jw}$
iv) first order pole (1+$\frac{1}{1+jw}$)
v) second order pole $\frac{1}{1+0.033jw- \frac{w^2}{144}}$
Step 4 =>
SR No. | Factors | Magnitude | Phase |
---|---|---|---|
1 | k=8 | 18.06 dB straight line | $\phi$=0 |
2 | $\frac{1}{jw}$ | straight line of slope -20 dB/sec phassing through, w=1,0dB point | $\phi$ = -90 for all value of w |
3 | $\frac{1}{1+jw}$ | line slopes are i) 0dB/dec for w<1 ii) -20dB/dec for w>1 | $\phi$=ta$n^{-}$(w) |
4 | (1+$\frac{jw}{4}$) | lines slops are i) 0dB/dec for w<4 ii) +20 dB/dec for w>4 | $\phi$=ta$n^{-}(\frac{w}{4})$ |
5 | $\frac{1}{1+0.033jw -\frac{w^2}{144}}$ | i) 0 dB/dec for w<12 ii) -40 db/dec for w>12 | $\phi$=ta$n^{-}(\frac{0.033w}{1-\frac{w^2}{144}})$ |
Step 5=> Magnitude plot
SR No. | Factors | Resultant slop | start point | End point |
---|---|---|---|---|
1 | k | 18.06 dB straight line | 0.1 | $\infty$ |
2 | $\frac{1}{jw}$ | -20 dB/dec | 0.1 | 1 |
3 | $\frac{1}{1+jw}$ | -20+(-20) = -40 dB/dec | 1 | 4 |
4 | (1+$\frac{jw}{4}$) | -40+(20) = -20 dB/dec | 4 | 12 |
5 | $\frac{1}{1+0.033jw -\frac{w^2}{144}}$ | -20 +(-40) = -60 dB/dec | 12 | $\infty$ |
Step 6 => Phase angle equation
i) For k=8,$\phi$ = 0
ii) For $\frac{1}{jw}$ $\phi$ = -90
iii) For $\frac{1}{1+jw}$ $\phi= -tan^- (w)$
iv) For (1+$\frac{jw}{4}$), $\phi= -tan^- (\frac{w}{4})$
v) For $\frac{1}{1+0.033jw -\frac{w^2}{144}}$ $\phi= -tan^- (\frac{0.033w}{1-\frac{w^2}{144}})$
Step 7 => Phase angle
w | $\frac{1}{jw}$ | $-tan^- (w)$ | $tan^- (\frac{w}{4})$ | $tan^- (\frac{0.33w}{1-\frac{w^2}{144}})$ | $\phi_{12}$ |
---|---|---|---|---|---|
0.1 | -90 | -3.71 | 1.43 | -0.19 | -94.47 |
0.5 | -90 | -26.57 | 7.13 | -0.95 | -110.39 |
1 | -90 | -45 | 14.04 | -1.9 | -122.86 |
4 | -90 | -75.96 | 45 | -8.45 | -129.41 |
5 | -90 | -78.69 | 51.34 | -11.29 | -128.41 |
8 | -90 | -82.87 | 63.43 | -25.42 | -134.86 |
9 | -90 | -83.66 | 66.04 | -34.17 | -141.79 |
10 | -90 | -84.89 | 68.2 | -47.2 | -153.29 |
11 | -90 | -84.81 | 70.02 | -66.25 | -171.04 |
15 | -90 | -86.19 | 75.05 | 41.35-180 | -239.77 |
50 | -90 | -88.85 | 85.43 | -174.24 | -268.96 |
100 | -90 | -89.71 | 87.71 | -177.24 | -268.96 |
500 | -90 | -89.89 | 89.54 | -179.46 | -269.81 |
1000 | -90 | -89.94 | 89.77 | -179.73 | -269.9 |
Step 8 => draw the bode plot
GM = + 8dB,
PM = $48^o$
$w_{gc}$ = 3rad/sec
$w_{pc}$ = 12 rad/sec
The given system is stable.