written 6.0 years ago by | • modified 5.9 years ago |
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Time Domain
Difficulty : High
Marks : 5M
written 6.0 years ago by | • modified 5.9 years ago |
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Time Domain
Difficulty : High
Marks : 5M
written 5.9 years ago by | • modified 5.9 years ago |
Given, $s^{4}+7s^{3}+10s^{2}+2ks+k=0$
$s^{4}|1\quad 10\quad k$
$s^{3}|7\quad 2k\quad 0$
$s^{2}|\cfrac{70-2k}{7}\quad k\quad 0$
$s^{1}|\cfrac{\left(\cfrac{70-2k}{7}\right)2k-7k}{\left(\cfrac{70-2k}{7}\right)} \quad 0\quad 0$
$s^{0}|k \quad 0\quad 0$
At $s^0 \Longrightarrow k \gt 0$
For $s^{1}=\cfrac{\left(\cfrac{70-2k}{7}\right)2k-7k}{\left(\cfrac{70-2k}{7}\right)} \gt 0$
$k \left[ 2\left(\cfrac{70-2k}{7}\right)-7 \right] \gt 0$
$ \left[ \cfrac{140-4k-49}{7} \right] \gt 0$
$140-4k-49=0$
$91=4k$
$\cfrac{91}{4}=k$
$22.75 \gt k$
For $s^{2}=\cfrac{70-2k}{7} \gt 0$
$70-2k \gt 0$
$k \lt 35$
Combining the condition, k should be in the range of $0 \lt k \lt 35$.