Given => G(s)H(s) = $\frac{k(s+3)}{s(s+1)(s+2)(s+4)}$
step 1=> obtain trial no of losi,
Here, p=poles=4
z= Zeros = 1
No of losi = p-z = 3
step 2=> Draw poles zeros poles are
s=0,-1,-2,-4
zeros are
s=-3
step 3=> Real axis losi=>
present between,
-$\infty$<$\sigma$<-4
-3<$\sigma$<-2
-1<$\sigma$<0</p>
step 4=> calculate number of asympototes and angle of asymptotes
a) Number of asymptotes = p-z = 4-1 = 3
b) Angle of asymptotes = $\beta$x = $\frac{(2x+1)180}{p-z}$ ; x=0,1,2
for x = 0 , $\beta$ = $60^o$
for x = 1 , $\beta$ = $180^o$
for x = 2 , $\beta$ = $300^o$
step 5=> centroid $\sigma_c$ = $\frac{sum of poles - sum of zeros}{p-z}$
$\sigma_c$ = $\frac{-1-2-4-(-3)}{3}$
$\sigma_c$ = -1.33
step 6=> Break away point=>
1 + G(s)H(s) = 0
1 + $\frac{k(s+3)}{s(s+1)(s+2)(s+4)}$ = 0
k = $\frac{-s^4 - 7s^3 - 14s^2 - 8s}{s+3}$
s(s+1)(s+2)(s+4)+k(s+3) = 0
$s^4 + 7s^3 + 14s^2 + 8s + k(s+3)$
$k(s+3) = -s^4 -7s^3 -14s^2 - 8s$
k = $\frac{-s^4 -7s^3 -14s^2 - 8s}{s+3}$
differentiate wrt s,
$\frac{dk}{ds}$ = $\frac{(s+3)(-4s^3-21s^2-28s-8)-(s^4-7s^3-14s^2-8s)}{(s+3)^2}$
but $\frac{dk}{ds}$ = 0
$0 = -3s^4 - 26s^3 -77s^2 -84s -24$
we get,
$S_1$ =-0.4349
$S_2$ = -1.6097
$S_3$ = -3.31 + 0.681 j
of these only,
$S_1$ = -0.4349 is valid
since $S_2$, $S_3$, $S_4$ do not lie on the root locus.
step 7=> Angle of departure or arrival
=> not required, since there is no complex poles or zeros.
Step 8=> Intersection with imaginary axis
=> 1+G(s)H(s) = 0
1 + $\frac{k(s+3)}{s(s+1)(s+2)(s+4)}$ = 0
s(s+1)(s+2)(s+4)+k(s+3) = 0
$s^4 + 7s^3 + 14s^2 + 8s + ks + k3$ = 0
$s^4 + 7s^3 + 14s^2 + (8+k)s + k3$ = 0
using routh array,
$s^4$ |
0 |
14 |
3k |
$s^3$ |
7 |
(8+k) |
0 |
$s^2$ |
$\frac{98-(8+k)}{7}$ |
3k |
0 |
$s^1$ |
$\frac{\frac{(98-8-k)(8+k)-21k}{7}}{\frac{98-(8+k)}{7}}$ |
0 |
0 |
$s^0$ |
3k |
|
|
$\therefore \frac{(\frac{98-8-k}{7})(8+k)-21k}{\frac{98-(8+k)}{7}} = 0$
(90-k)(8+k) - 147k =0
720 + 90k + 8k - $k^2$ - 147k = 0
$K_1$ = 9.64 ; $K_2$ = -72.64
since, k can not be negative
$K_{max}$ = 9.64
Auxillary equation is,
$(\frac{98-(8+k_{max})}{7})s^2 + 3K_{max}$ = 0
$(\frac{98-9.64}{7})s^2 + (3 * 9.64) = 0$
11.48$s^2$ + 28.9 = 0
$s^2 = -2.517$
$\therefore = \pm 1.58j$
w = 1.58 rad/sec
Hence the root locus cuts the imaginary axis at $\pm$ 1.58 rad/sec