| written 6.9 years ago by | • modified 6.8 years ago |
$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Time Domain
Difficulty : High
Marks : 10M
| written 6.9 years ago by | • modified 6.8 years ago |
$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic: Stability Analysis in Time Domain
Difficulty : High
Marks : 10M
| written 6.8 years ago by | • modified 6.8 years ago |
Given,
$s^6 + 2s^5 +8s^4 + 12s^3 + 20s^2 + 16s + 16$ = 0
| $s^6$ | 1 | 8 | 20 | 16 |
|---|---|---|---|---|
| $s^5$ | 2 | 12 | 16 | 0 |
| $s^4$ | 2 | 12 | 16 | 0 |
| $s^3$ | 0 | 0 | 0 | 0 |
$s^3$ row is zero
Auxillary equation using $s^4$ is given by,
A(s) = 2$s^4$ + 12 $s^2$ + 16
cliff A(s) wrt s,
$\frac{dA(s)}{ds}$ = 8$s^3$ + 24s
| $s^6$ | 1 | 8 | 20 | 16 |
|---|---|---|---|---|
| $s^5$ | 2 | 12 | 16 | 0 |
| $s^4$ | 2 | 12 | 16 | 0 |
| $s^3$ | 8 | 24 | 0 | 0 |
| $s^2$ | 6 | 16 | 0 | 0 |
| $s^1$ | 2.67 | 0 | 0 | 0 |
| $s^0$ | 16 |
Since there is no sign change, system is stage,
by solving the Auxillary equation
$2s^4 + 12s^2 + 16$ = 0
put $s^2$ = y
= $2y^2 + 12y + 16$ = 0
y = $\frac{-12 \pm \sqrt{144-128}}{4} = -3 \pm 1 $
$\therefore$ y = - 2 , -4
$s^2$ = -2 , - 4
s= +i$(2)^{1/2}$,+i2
Since we have non repeated roods on jw axis, the system is marginally stage.
