written 5.9 years ago by
teamques10
★ 68k
|
•
modified 5.8 years ago
|
Given,
$s^6 + 2s^5 +8s^4 + 12s^3 + 20s^2 + 16s + 16$ = 0
$s^6$ |
1 |
8 |
20 |
16 |
$s^5$ |
2 |
12 |
16 |
0 |
$s^4$ |
2 |
12 |
16 |
0 |
$s^3$ |
0 |
0 |
0 |
0 |
$s^3$ row is zero
Auxillary equation using $s^4$ is given by,
A(s) = 2$s^4$ + 12 $s^2$ + 16
cliff A(s) wrt s,
$\frac{dA(s)}{ds}$ = 8$s^3$ + 24s
$s^6$ |
1 |
8 |
20 |
16 |
$s^5$ |
2 |
12 |
16 |
0 |
$s^4$ |
2 |
12 |
16 |
0 |
$s^3$ |
8 |
24 |
0 |
0 |
$s^2$ |
6 |
16 |
0 |
0 |
$s^1$ |
2.67 |
0 |
0 |
0 |
$s^0$ |
16 |
Since there is no sign change, system is stage,
by solving the Auxillary equation
$2s^4 + 12s^2 + 16$ = 0
put $s^2$ = y
= $2y^2 + 12y + 16$ = 0
y = $\frac{-12 \pm \sqrt{144-128}}{4} = -3 \pm 1 $
$\therefore$ y = - 2 , -4
$s^2$ = -2 , - 4
s= +i$(2)^{1/2}$,+i2
Since we have non repeated roods on jw axis, the system is marginally stage.