written 5.9 years ago by | • modified 5.8 years ago |
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 +5s +6}$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic : State Variable Models
Difficulty : High
Marks : 10M
written 5.9 years ago by | • modified 5.8 years ago |
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 +5s +6}$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic : State Variable Models
Difficulty : High
Marks : 10M
written 5.8 years ago by | • modified 5.8 years ago |
Properties of state Transition matrix =>
1) $\phi(o)$ = $e^{Ao}$ = I
2) $\phi(t) = e^{At} = [\phi(-t)]^{-1}$
i.e. $\phi^{-1}(t) = \phi(-t)$
3) $\phi(t_1 + t_2) = e^{A(t_1+t_2)}$
=$e^{At_1}.e^{At_2} = \phi(t_1).\phi(t_2)$
4) $[\phi(t)]^n = [e^{At}]^n$
= $\phi(nt)$
5) $\phi(t_2-t_1).\phi(t_1-t_o) = \phi(t_2-t_o)$
Given =>
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 + 5s + 6}$
The given transfer function can be written in the form,
T(s) = $\frac{Y(s)}{V(s)}.\frac{X_1(s)}{X_1(s)}$ = $\frac{X_1(s)}{V(s)}.\frac{Y(s)}{X_1(s)}$
let, $\frac{X_1(s)}{V(s)} = \frac{1}{s^2 + 5s + 6}$ -----(1)
and $\frac{Y(s)}{X_1(s)} = 3s+4$ ---------(2)
From equation (1),
$X_1(s) = [s^2 + 5s + 6] = V(s)$
$s^2 X_1(s) + 5sX_1(s) + 6X_1(s) = V(s)$
(Taking inverse laplace)
$\frac{d^2}{dt^2} x_1(t) + 5\frac{d}{dt}x_1(t) + 6x_1(t) = u(t)$
${\ddot{x}}_1(t) + 5{\dot{x}}_1(t) + 6x(t) = u(t)$ ----------(3)
let,
${\dot{x}}_1(t) = x_2(t)$
${\dot{x}}_2(t) = x_3(t) = x_1(t)$
equation (3) becomes,
$x_3(t) + 5x_2(t) + 6x_1(t) = u(t)$ --------(4)
equation (4) can be written as,
$0{\dot{x}}_3(t) + x_3(t) + 5 x_2(t) + 6x(t) = u(t)$
$0{\dot{x}}_3(t) = -x_3(t) - 5 x_2(t) - 6x(t) + u(t)$
writting in matrix form,
$\begin{bmatrix} {\dot{x}}_1(t) \\\ {\dot{x}}_2(t) \\\ {\dot{x}}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ -6 & -5 & -1 \end{bmatrix} . \begin{bmatrix} x_1(t) \\\ x_2(t) \\\ {x}_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix} u(t)$ -----( 5 )
using equation (2)
$\frac{Y(s)}{X_1(s)} = 3s + 4$
$Y(s) = (3s+4)X_1(s)$
$Y(s) = 3sX_1(s) + 4X_1(s)$
Taking inverse laplace
$y(t) = 3\frac{d}{dt}x_1(t) + 4x_1(t)$
$\therefore 3\dot{x}_1(t) + 4x_1(t)$ = y(t)
let $x_1(t) = x_2(t)$
= $3x_2(t) + 4x_1(t) = y(t)$ ---------( 6 )
output can be written as
y(t) = $\begin{bmatrix} 4 & 3 & 0 \end{bmatrix}$.$\begin{bmatrix} x_1(t) \\\ x_2(t) \\\ x_3(t) \end{bmatrix} $ ----------( 7 )
Here, (5) and (7) represent the state variable model.