written 5.9 years ago by
teamques10
★ 68k
|
•
modified 5.8 years ago
|
Given, G(s) = $\frac{20(s+1)}{s^2(s+2)(s+4)}$
let, H(s) = 1 (unity feedback)
=> G(s)H(s) = $\frac{20(s+1)}{s^2(s+1)(s+4)}$
Since, there is two pole at the origin, This is type 2 system.
Hence it would give us finite steady state error only for parabolic input. For step and ramp input, it would give us zero steady state error.
1. To find static error coefficient
$$K_p = \lim_{s\to0} G(s).H(s)$$
$$\lim_{s \to 0} \frac{20(s+1)}{s^2 (s+2)(s+4)}$$
$$ \therefore K_P = {\infty}$$
$$K_V = \lim_{s \to 0} S.G(s).H(s)$$
$$K_V = \lim_{s \to 0} \frac{20(s+1)}{s(s+2)(s+4)}$$
$$ \therefore K_V = \infty$$
$$K_a = \lim_{s \to 0} s^2G(s)H(s)$$
$$K_a = \lim_{s \to 0} s^2 \frac{20(s+1)}{s^2(s+2)(s+4)}$$
$$K_a = \lim_{s \to 0} \frac{20(s+1)}{(s+2)(s+4)}$$
$$K_a = \frac{20(0+1)}{(0+2)(0+4)}$$
$$K_a = \frac{20}{8}$$
$$K_a = 2.5$$
2. Steady state error of ramp i/p with magnitude 4
A = 4
$$ess = \frac{A}{K_V} = \frac{4}{\infty}$$
$$ess = 0$$