0
1.4kviews
If the basic runway length for an airport situated at an elevation of 180 meter is 800 meter. Find the actual runway length required if mean of average daily temperature and

mean of maximum daily temperature is obtained as $36^o$ c and $42^o$ C respectively . Assume the effective gradient of 2% on the runway.

1 Answer
0
62views
  • Basic Runway length $=800 \mathrm{~m}$.
    • Elevation correction $=\frac{7}{100} \times 800 \times \frac{180}{300}$ $=33.6 \mathrm{~m}$
    • Correction Runway length after Elevation correction $=833.6 \mathrm{~m}$
    • $A R T$ (Airport Ref. $\operatorname{Temp} ) =T_{a}+\left(\frac{T_{m}-T_{a}}{3}\right)$ $=36+\left(\frac{42-36}{3}\right)=38^{\circ} \mathrm{C}$
    • Stand. Atm Temp. $=15^{\circ}-(0.0065 \times 180)=13.83^{\circ} \mathrm{C}$
    • Rise in temp $=38-13.83=24.17^{\circ} \mathrm{C}$
    • $\begin{aligned} \text { Temp.Correction } &=\frac{1}{100} \times 833.6 \times \frac{24.17^{\circ} \mathrm{C}}{1^{\circ} \mathrm{C}} \\ &=201.48 \mathrm{~m} \end{aligned}$
    • Corrected Runway length after Temp $=833.6+201.48$ $=1035.08 \mathrm{~m}$
    • Total% correction (Temp. & Elevation) $=\frac{(1035 \cdot 08-800)}{800}$ $=29.38\lt35 \% \mathrm{OK}$
    • Correction For gredient $=\frac{0.2 \%}{1 \%} \times 1035.08 \times 20$=414.032m;
    • corrected length $=(1035.08+414.032 )\mathrm{~m. }$
    • Hence, Final Runway Length $=1449.11 \mathrm{~m}$
1

Please, improve the formatting.


Please log in to add an answer.