written 5.9 years ago by
teamques10
★ 69k
|
•
modified 5.9 years ago
|
Given :
$f_c$ = 100KHz
$f_{m(max)}$ = 5KHz
a) Frequency limits for upper and lower sideband
$\rightarrow f_{upper} = f_c + f_{m(max)}$ = 105 kHz
$\rightarrow f_{lower }= f_c - f_{m(max)} $ = 95 kHz
b) Bandwidth of AM
$\rightarrow$ Bandwidth = $f_{upper} - f_{lower}$
= 105kHz - 95 kHz = 10kHz.
OR
$\rightarrow$ Bandwidth = $2f_{m(max)}$ = 2 (5 kHz) = 10 kHz
c) Total Power
$ P_{c}=\frac{V_{c}^{2}}{2 R}=\frac{10^{2}}{2(10)}=5 W $
$ P_{L S B}=\frac{m^{2} P_{c}}{4}=\frac{(1)^{2} \times 5}{4}=1 \cdot 25 W $
$ P_{U S B}= \frac{m^{2} P c}{4}=\frac{(1)^{2} \times 5}{4}=1 \cdot 25 w $
$P_t = P_c + P_{L S B} +P_{U S B} $
= 5 + 1.25 + 1.25 = 7.5
d) Power spectrum
e) Current Transmitted
$ P t=P_{c}\left(1+\frac{m^{2}}{2}\right) $
But, $P = I^2 R$
$ I_{t}^{2} R=P_{C}\left(1+\frac{m^{2}}{2}\right) $
= 5 $( 1 + \frac{1}{2} )$
$I_{t}^{2} = \frac{7.5}{10}$
$I_{t} = \sqrt{\frac{7.5}{10}}$
$I_t$ = 0.866 A