written 8.6 years ago by | • modified 4.6 years ago |
Apply the contrast stretching transformation function on the input image F and obtain the output image R.
written 8.6 years ago by | • modified 4.6 years ago |
Apply the contrast stretching transformation function on the input image F and obtain the output image R.
written 8.6 years ago by | • modified 8.6 years ago |
Step 1: Derivation of Transform:
$S = \begin{bmatrix} αr & 0≤r≤a \ S_1+β(r-a) & a<r≤b \="" s_2+γ(r-b)="" &="" b<r≤l-1="" \="" \end{bmatrix}="" $<="" p="">
When a = 8, b = 12, L – 1 = 15
S1 = 4, S2 = 8
We get, α = 0.5, β = 1, γ = 2.33
By substitution we get,
$S = \begin{bmatrix} 0.5r & 0≤r≤8 \ r-4 & 8<r≤12 \="" 8+2.33(r-12)="" &="" 12<r≤15="" \="" \end{bmatrix}="" $<="" p="">
Step 2: To find output image
For r = 7, s = 3.5 = 4
r = 12, s = 8
$Output image = \begin{bmatrix} 4 & 8 & 1 & 2 & 2 \ 6 & 15 & 1 & 3 & 2 \ 8 & 2 & 3 & 15 & 8 \ 4 & 1 & 4 & 15 & 1 \ 7 & 10 & 2 & 2 & 3 \ \end{bmatrix} $