written 5.6 years ago by
teamques10
★ 68k
|
modified 5.6 years ago
by
yashbeer
★ 11k
|
Data : $\mu = 0.97 poise = \frac{0.97}{10} = 0.097 Ns/m^2$
Relative density = 0.9 (of 0:1)
$\therefore Density \rho_o = 0.9 \times 1000 = 900 kg/m^3$ (of oil)
Dia. of pipe D = 100 mm = 0.1 m
Length L = 10 m
Mass of Oil = m = 100 kg.
and time t = 30 seconds.
$P_1 - P_2 = ? $
The difference of pressure for viscous flow is
$p_1 - p_2 = \frac{32mŪL}{D^2}$ Avg. velocity $Ū = \frac{Q}{Area}$
Now, mass of oil per second = $\frac{100}{30}$ kg/s
= $\rho \times Q = 900 \times Q$
$\therefore \frac{100}{30} \times Q$
$\therefore Q = 0.0037 m^3/s$
Now, $Ū = \frac{Q}{A} = \frac{0.0037}{\pi \times D^2} = \frac{0.0037}{\pi \times 0.1^2} = 0.471 m/s$
For Laminar/viscous flow, Re < 2000
Now, $Re = \frac{\rho VD}{\mu}$
$\rho = \rho_o = 900, v = Ū = 0.471 m/s$
D = 0.1m, $\mu$ = 0.097
$Re = 900 \times \frac{0.471 \times 0.1}{0.097} = 436.91$
$\because$ Value of Re < 2000, hence flow is laminar.
$\therefore p_1 - p_2 = \frac{32 \mu Ū L}{D^2} = \frac{32 \times 0.097 \times 0.471 \times 10}{(0.1)^2}$
$p_1 - p_2 = 1462.28 N/m^2$
= $1462.28 \times 10^-4 N/cm^2$
= $p_1 - p_2 = 0.1462 N/cm^2$