Data :
Dia, of siphon, d = 200 mm = 0.2 m.
Difference in level of 2 reservoirs, H = 40 m.
Length of pipe = L = 8000 m.
Height of ridge summit from water level in upper reservoir = 8 m.
Let the depth of the pipe below the summit of ridge = xm.
$\therefore$ height of siphon from the water surface in the upper reservoir = (8-x)m.
pressure heat at c, $\frac{pc}{\varrho g}$ = 3 m of water absolute.
Atmospheric pressure head, $\frac{pa}{\varrho g}$ = 10.3 m of water.
f = 0.006 (co-efficient of friction).
Length of siphon from upper reservoir to the summit, $L_1$ = 500 m.
Figure A.
Applying Bernoulli's Equation to point A and B, and taking datum line passing through B, we have, (shown in figure A).
$\frac{PA}{\varrho g} + \frac{VA^2}{2g} + Z_A = \frac{PB}{\varrho g} + \frac{VB^2}{2g} + Z_B + h_L$
0 + 0 + 40 = 0 + 0 + 0 + $\frac{4f \times L \times v^2}{d \times 2g}$
$40 = \frac{4 \times 0.006 \times 8000 \times v^2}{0.2 \times 2 \times 9.81}$
v = 0.904 m/s
Now applying Bernoulli's Equation to points A and C and assuming datum line passing through A, (Shown in Figure A)
$\frac{PA}{\varrho g} + \frac{v^2A}{2g} + Z_A = \frac{pc}{\varrho g} + \frac{vc^2}{2g} + Z_c + h_L$
$\because \frac{PA}{\varrho g} = 10.3m$ and $\frac{pc}{\varrho g} = 3m$
$\therefore 10.3 + 0 + 0 = 3 + \frac{v^2}{2g} + (8 - x) + \frac{4 \times f \times L_1 \times v^2}{d \times 2g}$
$\therefore 10.3 = 3 = \frac{0.904^2}{2 \times 9.81} + (8 - x) + \frac{4 \times 0.006 \times 500 \times (0.904)^2}{0.2 \times 2 \times 9.81}$
$\therefore$ x = 3.24 m.
$\therefore$ Discharge Q = Area x Velocity
= $\frac{\pi}{4} \times 0.2^2 \times 0.904$
Q = 0.0283 $m^3/s$
$\therefore$ The minimum depth of the pipe below the summit of the ridge is 3.24 m.