Given
γ = $10°$
$V_{c}$=50m/min
$t_{2}$= 0.4mm
$t_{1}$= 0.148mm
b= 2mm
$F_{c}$=1500N
$F_{t}$=1000N
Soln:
(i) Chip reduction coefficient:
$Rc=\frac{t_{1}}{t_{2}} =\frac{0.148}{0.4}$=0.37
(ii) Shear Angle:
$tan ∅=\frac{r_c .cosγ}{1-r_(c ).sinγ}$
∴tan ∅=$\frac{0.37 .cos10}{1-0.37.sin10}$
∴tan ∅=0.38
$∴∅=21.27°$
(iii) Shear Force:
$F_{s}=F_{c} cos∅ - F_{t} sin∅$
$∴ F_{s}= 1500 \times 0.93 – 1000 \times 0.36$
∴ $F_{s} = 1032.23 N$
(iv) Force Normal to the shear plane:
$F_{N}=F_{t} cos∅ + F_{c} sin∅$
∴ $F_{N} = 1000 \times 0.93 + 1500 \times 0.36$
∴ $F_{N}$ = 1470N
(v) Frictional Force:
F=$F_{t} cosγ + F_{c} sinγ$
∴ F= 984.8 + 260.47
∴ F= 1245.27N
(vi) Normal to frictional force
N=$F_{c} cosγ – F_{t} sinγ$
∴ N= 1477.2 – 173.65
∴ N= 1300.55N
(vii) Shear stress :
$f_{s}=\frac{F_{s}}{A_{S}} =\frac{F_{s}}{\frac{t_{1}.b}{sin∅}}$
∴$f_s=\frac{1032.23}{\frac{0.148 ×2}{sin(21.27)}} = 1265.05 N⁄mm{^2}$
(viii) Shear strain :
Shear strain=$cot∅ + tan (∅-γ)$
=2.56 + 0.199
= 2.759
(ix) coefficient of friction :
$μ=\frac{F}{N}=\frac{1245.27}{1300.55}$=0.95
(x) Resultant Force.:
R=$\sqrt{F^2+N^2}= 1800.59N$