$T_E=T_{sat_{Pe}}=-10℃,T_C=T_{sat_{Pc}}=30℃$
Capacity = 10TR
∴$Q ̇_a=3.5×10=35 kJ/sec$
Assuming that superheating of refrigerant at inlet to compressor takes place in evaporator and adds to refrigeration effect.
s1=s2
$s_{g_{-10℃}}+Cpg×ln(\frac{Tsup}{Tsat})=s_{g_{30℃}}+Cpg×ln(\frac{Tsup}{Tsa}t)$
$5.5789+2.8×ln(\frac{16+273}{-10+273})=4.9842+2.8×ln(\frac{T2}{30+273})$
T2=411.74 K=138.74 °C
$h1=h_{g_{-10℃}}+Cpg(Tsup-Tsat)$
=1426.6+2.8(16-(-10))
h1=1499.4 kJ/kg
$h3=h_{f_{30℃}}=323.1 kJ/kg$
h3=h4=323.1 kJ/kg
$h2=h_{g_{30℃}}+Cpg(Tsup-Tsat)$
=1468.9+2.8(138.74-30)
=1773.372 $\frac{kJ}{kg}$
COP of given system = $\frac{R.E.}{Wc}=\frac{h1-h4}{h2-h1}$
COP=4.294
Also, $Q ̇_a=m ̇_R×(h1-h4)$
mass flow rate,$m ̇_R=0.02975 \frac{kg}{sec}$
Volume of refrigerant handled by compressor, V1
$v1=v_{g_{-10℃}}$×$\frac{Tsup}{Tsat}=0.4189$×$\frac{289}{263}$=$0.4603 \frac{m3}{kg}$
$V1= m ̇_R×v1=0.01369 \frac{m3}{s}=0.8216 \frac{m3}{min}$
Temperature of refrigerant at compressor delivery = T2=$138.74 °C$