Velocity distribution: u=$a+by-cy^2$
The following condition must be satisfied:
i)At y=0 , u=0
∴u=$a+by-cy^2$
0=a+0-0
∴a=0
ii)At y=δ, u=U
∴U=$bδ-cδ^2$………………………(i)
iii)At y=$δ, \frac{du}{dy}$=0
∴$(\frac{du}{dy})_(y=δ)=\frac{d}{dy} (a+by-cy^2 )=b-2cy=b-2cδ=0$…………(ii)
Substituting values of b=2cδ from (ii) in (i), we get
U=$2cδ^2-cδ^2$
$U=cδ^2$
$c=\frac{U}{δ^2}$
Hence from the velocity distrubution is:
u=$\frac{2Uδ}{δ^2} y-\frac{U}{δ^2} y^2$
$u=\frac{2U}{δ y}-\frac{U}{δ^2} y^2$ (ans.)
Boundary layer thickness:
$\frac{u}{U}=\frac{2y}{δ}-\frac{y}{δ}^2$
We know, $\frac{\tau_0}{ρU^2}=\frac{d}{dx} [∫_0^δ\frac{u}{U} (1-\frac{u}{U}dy]$
Substituting the value of $\frac{u}{U}$, we get
=$\frac{d}{dx} [∫_0^δ{\frac{2y}{δ}-\frac{4y^2}{δ^2} +\frac{2y^3}{δ^3} -\frac{y^2}{δ^2} +\frac{2y^3}{δ^3} -\frac{y^4}{δ^4}} dy]$
=$\frac{d}{dx }[∫_0^δ\frac{2y}{δ}-\frac{5y^2}{δ^2} +\frac{4y^3}{δ^3}-\frac{y^4}{δ^4}]dy$
=$\frac{d}{dx} [(\frac{2y^2}{2δ}-\frac{5y^3}{3δ^2 }+\frac{4y^4}{4δ^3}-\frac{y^5}{5δ^4 }]_0^δ=\frac{d}{dx} [\frac{δ-5}{3} δ+δ-\frac{1}{5} δ]=\frac{d}{dx} (\frac{2}{15} δ)$
$\tau_0=ρU^2×\frac{d}{dx} (\frac{2}{15 δ})=\frac{2}{15} ρU^2 \frac{dδ}{dx}$
Also, according to Newton’s law of viscosity,
$\tau_0=μ(\frac{du}{dy})_(y=0)$
$u=U(\frac{2y}{δ}-(\frac{y}{δ})^2)$
$\frac{du}{dy}=U(\frac{2}{δ}-\frac{2y}{δ^2} )$,U being constant
$(\frac{du}{dy})_(y=0)=U(\frac{2}{δ}-0)=\frac{2U}{δ} ∴τ_0=\frac{2μU}{δ}$
Equating the value of $τ_0 $
$\frac{2}{15} ρU^2 \frac{dδ}{dx}=\frac{2μU}{δ}$
$δ \frac{dδ}{dx}=\frac{15μU}{(ρU^2 })=\frac{15μ}{ρU}$
$δ∙dδ=\frac{15μ}{ρU}$ dx
Integrating both the sides we get,
$\frac{δ^2}{2}=\frac{15μ}{ρU}x+C$
At x=0,δ=0 ∴C=0
$\frac{δ^2}{2}=\frac{15μ}{ρU} x$
$δ=\sqrt{\frac{2×15μx}{ρU}}=5.48\sqrt{\frac{μx}{ρU}}=5.48\sqrt{\frac{\mu x \times x}{ρU×x}}=5.48\sqrt{\frac{x^2}{Re_x}} =5.48 \frac{x}{\sqrt{Re_x }}$……(ans)