Length of the pipeline, L=2400 m
Power transmitted, P=115 kW
Pressure at inlet, p=$500N⁄cm^{2} =5000k N⁄m^2$
H=$\frac{p}{w}=\frac{5000}{9.81}=509.68 m$
w=specific weight of water.
Pressure drop=$100 N⁄cm^2=1000 kN⁄m^2 )$
Therefore loss of head, $h_f=\frac{1000}{9.81}$=101.94 m
Coefficient of friction, f=0.026.
i)Diameter of Pipe, D:
Head available at the end of the pipe, $H-h_f$=509.68-101.94=407.74 m
Now, power transmitted is given by : P=$wQ(H-h_f )$kW
115=9.81×Q×407.74
Q=$0.02875m^3⁄s$
But, Q=$\frac{π}{4} D^2 V$
0.02875=$\frac{π}{4} D^2 V$
V=$\frac{0.02875×4}{πD^2}=\frac{0.03661}{D^2 }$
The head lost due to friction,$h_f=\frac{4fLV^2}{2gD}$
But, $h_f$=101.94
$101.94=\frac{4×0.026×2400×(0.0366⁄D^2 )^2}{2×9.81×D}$
5981.87=$\frac{1}{D}^5$
D=$\sqrt{\frac{1}{5981.87}}$=0.1756m
**ii)Efficiency of transmission,$η$:**
$η=\frac{H-h_f}{H}=\frac{509.68-101.94}{509.68}$=0.79=79%
iii)Maximum efficiency: power transmitted through the pipe is maximum, when head lost due to friction in the pipe is equal to 1/3 of the total supply head.
$h_f=\frac{H}{3}$
$H-3×\frac{4fLV^2}{2gD}$=0
509.68-$\frac{3×4×0.026×2400×(0.0366⁄D^2 )^2}{2×9.81×D}$=0
509.68-$\frac{0.0511}{D^{5}}$ =0
D=0.1586 m