written 5.9 years ago by
teamques10
★ 68k
|
•
modified 5.9 years ago
|
Given: angle of bend θ=$120^{\circ}$
Diameter of pipe at inlet $D_{1}$=30cm=0.30m
Diameter of pipe at outlet $D_{2}$=15cm=0.15m
Area at inlet , $A_{1}=\frac{π}{4} D1^{2}=0.0706m^2$
Area at outlet, $A_{2}=\frac{π}{4} D_2^{2}=0.01767m^2$
Pressure at inlet =$0.15N⁄mm^{2} =0.14×10^6 N⁄m^2 $
Q=250litres/sec=$0.25m^{3}sec$
$z_{2}$=-1.5m
$V_1=\frac{Q}{A_1} =\frac{.25}{.0706}$=3.541m/s
$V_2=\frac{Q}{A_2} =\frac{.25}{.01767}=14.1483m/s$
Applying Bernoulli’s equation at section 1 and 2
$\frac{p_1}{ρg}+\frac{V_1^{2}}{2g}+z_1=\frac{p_2}{ρg}+\frac{V_2^{2}}{2g}+z_2$
$z_2=-5$
$\frac{0.14×10^{6}}{1000×9.81}+\frac{3.541^{2}}{2×9.81}=\frac{p_2}{1000×9.81}+\frac{14.1483^2}{2×9.81}$-1.5
$p_2=60897.14N/m^2$
Forces on the bend in x and y directions are given by
$F_x=ρQ[V_1-V_2 cosθ]+p_1 A_1-p_2 A_2 cosθ$
=$1000×.25[3.541-14.1483cos120]+.14×〖10〗^6×.0706-60897.4×.01767cos120 =13075.82N$
And
$F_y=ρQ(-V_2 sinθ)-p_2 A_2 sinθ$
=$1000×.25(-14.1483sin120)-60897.14×.01767sin120$
=-3995.08N
-ve sign indicates the $F_y$ is acting in the downward direction.
Therefore resultant force, $F_R=2\sqrt{F_x^{2}+F_y^{2}}=2\sqrt{13075.82^{2}+-3995.08^{2}}$
$F_R=13672.52N$ ….(ANS.)
The angle made by resultant force with x-axis given by,
tanθ=$\frac{F_y}{F_x} =\frac{3995.08}{13075.82}$=0.3055
$θ=16.98^0$ …..(ANS)