written 6.0 years ago by | modified 2.6 years ago by |
$u– y^{3}/3 + 2x-x^{2}y, v=xy^{2} -2y - x^{3}/3$
i. whether the flow is possible
ii. obtain an expression for stream function
iii. obtain an expression for potential function
written 6.0 years ago by | modified 2.6 years ago by |
$u– y^{3}/3 + 2x-x^{2}y, v=xy^{2} -2y - x^{3}/3$
i. whether the flow is possible
ii. obtain an expression for stream function
iii. obtain an expression for potential function
written 6.0 years ago by |
u=$\frac{y^3}{3}+2x-x^2 y \ \ \ \ \ \ \ v=xy^2-2y-\frac{x^3}{3}$
i)Whether the flow is possible
For this condition,
$\frac{∂u}{∂x}+\frac{∂v}{∂y}$=0
$\frac{∂u}{∂x}$=2-2.x.y,$\frac{∂v}{∂y}$=2.x.y-2
Which satisfy the condition hence flow is possible.
ii)To determine stream function,
u=$\frac{∂Ψ}{∂y}$
$\frac{y^3}{3}+2x-x^2 y=\frac{∂Ψ}{∂y}$
Integrating both the sides,
Ψ=$\frac{y^4}{12}$+$2xy-\frac{(x^2 y^2)}{2}+f(x)$
Differentiating the above equation w.r.t. x,
$\frac{∂Ψ}{∂x}=2y-\frac{(2xy^2)}{2}+f^{'} (x)$
but,$\frac{∂Ψ}{∂x}$=-v
Therefore, $2y-\frac{(2xy^2)}{2}+f^{'} (x)=-xy^2+2y+\frac{x^3}{3}$
$f^{'} (x)=\frac{x^3}{3}$
$f(x)=\frac{x^4}{12}$
Substituting f(x) in Ψ
Ψ=$\frac{y^4}{12}+2xy-\frac{(x^2 y^2)}{2}+\frac{x^4}{12}$
iii) To determine potential function
$\frac{∂∅}{∂x}$=-u
$\frac{(∂∅)}{∂x}= \frac-{y}^{3}-2x+x^{2} y$
Integrating above expression
$∅=-\frac{(y^3 x)}{3}-\frac{(2x^2}{2}+\frac{(yx^3)}{3}+f(y)$
Differentiating w.r.t. y
$\frac{∂∅}{∂y}=-y^2 x+\frac{x^3}{3}+f^{'} (y)$
But $\frac{∂∅}{∂y}$=v
$-y^2 x+\frac{x^3}{3}+f^{'} (y)=xy^2-2y-\frac{x^3}{3}$
$f^{'} (y)=2xy^2-\frac{(2x^3)}{3}-2y$
$f(y)=\frac{(2xy^3)}{3}-\frac{2x^3 y}{3}-y^2$
$∅=\frac{-(y^3 x)}{3}-\frac{2x^2}{2}+\frac{yx^3}{3}+\frac{2xy^3}{3}-\frac{2x^3 y}{3}-y^2$
$∅=\frac{y^3 x}{3}-x^2-y^2-\frac{(yx^3)}{3}$
The above is potential function for given velocity component