From the table, the value of saturation
D.O. at $20^{\circ}C$ = 9.2 mg/l (assume)
D.O. content of the stream= 90% of saturation D.O.=$\left( \cfrac { 90 }{ 100 } \right) \times 9.2=8.28$mg/l
D.O. of mix at the start point (i.e at t=0)=$\left( \cfrac { 0 \times 1400+08.28\times 5000 }{ 5000+1400 } \right) =6.47 mg/l$
D$_{\circ}$ = initial D.O. deficit= D.O.$_{sat}$ – D.O.$_{mix}$= 9.2 – 6.47 = 2.73 mg/l
Minimum D.O. to be maintained = 4.2 mg/l
Critical D.O. deficit=D$_{c}$ = 9.2 – 4.2 = 5 mg/l
From equation given below,
${ \left( \cfrac { L }{ { D }_{ c }f } \right) }^{ f-1 }=f\left[ 1-(f-1)\cfrac { { D }_{ \circ } }{ L } \right] $
D$_{\circ}$ = 2.73 mg/l $\hspace{20mm}$ D$_{c}$ = 5 mg/l
${ f=\cfrac { { K }_{ R } }{ { K }_{ D } } }=\cfrac { 0.3 }{ 0.1 } =3/day$
we get, ${ \left( \cfrac { L }{ 5\times 3 } \right) }^{ 3-1 }=3\left[ 1-(3-1)\times \cfrac { 2.73 }{ L } \right] $
$L$=22.63 mg/l
${ Y }_{ l }=L[1-{ 10 }^{ -{ k }_{ D }l }]=22.63(1-{ 10 }^{ -0.1\times 5 })=15.47mg/l$
Now using the equation, $BOD_{mix}$
$15.47=\cfrac { { C }_{ w }\times 1400+1\times 5000 }{ 1400+5000 } $
$C_{w}$ = 67.14 mg/l
Degree of treatment required (%) = $ \cfrac { Original\quad B.O.D.-Permissible\quad B.O.D. }{ Original\quad B.O.D. } \times 100=\cfrac { 200(Assumed)-67.14 }{ 200 } \times 100$ = 66.43%