written 5.9 years ago by | • modified 4.5 years ago |
$\frac{d}{dx}(a\frac{du}{dx})+bu+c=0; 0 \leq x \leq 1$ Solve BCs are u(0)=u0 and $a(\frac{du}{dx})|_{x=L}=0$
Use Lagrange's linear shape function
written 5.9 years ago by | • modified 4.5 years ago |
$\frac{d}{dx}(a\frac{du}{dx})+bu+c=0; 0 \leq x \leq 1$ Solve BCs are u(0)=u0 and $a(\frac{du}{dx})|_{x=L}=0$
Use Lagrange's linear shape function
written 5.9 years ago by |
Given $\frac{d}{dx}(a\frac{du}{dx})+bu+c=0; 0 \leq x \leq 1$
Boundary Condition
u[0]=u_{o} a$a\frac{du}{dx}|_{x=l}$=0
1) Discretization: Dividing the domain into 3 elements
2) Take a general element of length he and set its local co-ordinate
Differentiating above eq, we get,
dx=$d\bar{x}$
3) Converting governing differential equation into local co-ordinate
dx=$d\bar{x}$
$\frac{d}{dx}(a\frac{du}{dx})+cu+q$=0
Local boundaries are
5) Weighted Integral form
$\int^{1}_{0}w_{i}R dx=0$
$\int _{o}^{he} w_{i}$ $[\frac{d}{d\bar{x}}(a \frac{du}{d\bar{x}})+cu+q]d\bar{x}$=0
$\int_{0}^{he} w_{i}(\frac{du}{d\bar{x}})d\bar{x}+\int_{0}^{he}w_{i}cu d{\bar{x}}+\int_{0}^{he}w_{i}qd\bar{x}$........(A)
Consider $\int_{0}^{he} w_{i}\frac{d}{d\bar{x}(a\frac{d}{d{\bar{x}}})}d\bar{x}$
Integrating by parts, above equation becomes,