written 5.9 years ago by
teamques10
★ 68k
|
•
modified 5.9 years ago
|
$∅=28^{\circ} 35^{1} = 28[\frac{35}{60}] = 28.583^{\circ}$
Average sun shine hours/day=9.5 hours on December 1
a=0.35,b=0.4
No. of days, n=365-30
=335 days on 1 December.
Solar declination, δ
δ=23.45 sin$([\frac{360}{365}](284+n))$
= 23.45 sin$([\frac{360}{365}](284+335))$
= $-22.06^{\circ}$
Sunrise hour angle is given by the equation
ωs= $cos^{-1}(-tan∅.tanδ )$
= $cos^{-1}[-tan 28.583 × tan(-22.06)⦌$
=77.244$^{\circ}$
=77.244×$[\frac{P}{180}]$ radians.
= 1.3482 radians .
Day length,
Smax= $\frac{2}{15}$ ωs
= $\frac{2}{15}$×77.244
= 10.299 Hrs.
$H_{0} =\frac{24}{P} Isc(1+0.033 cos[\frac{360}{365}])×(ωs Sin∅sinδ+cos∅cosδsinωs)$
$\frac{24}{P}$× 1.367 × 3600 $(1+0.033 cos [\frac{(360 \times 334)}{365}]$× $⦋(1.3482 sin(28.583)$
$sin(-22.06)+cos(28.583) \times cos(-22.06) sin(77.244)$
= 21328.6KJ/$m^{2}$ /day
=$[\frac{H_{g}}{H_{0}}](a+b s/S_{max})$
= 0.35+0.4(9.5/10.299)
= 0.718968
∴$H_{g} =H_{0}$ x 0.718968
= 21328.6x 0.718968
H = 15334.6KJ/$m^{2}$/day