From the table, the value of saturation
D.O. at $20^{\circ}C$ = 9.17 mg/l (fix value assume)
D.O. content of the stream= 90% of saturation D.O.=$\left( \cfrac { 90 }{ 100 } \right) \times 9.17=8.25$mg/l
D.O. of mix at the start point (i.e at l=0)=$\left( \cfrac { 8.25\times 6000+0\times 1600 }{ 6000+1500 } \right) =6.6 mg/l$
D$_{\circ}$ = initial D.O. deficit= D.O.$_{sat}$ – D.O.$_{mix}$= 9.17 – 6.6 = 2.57 mg/l
(Assume instantaneous mixing)
Minimum D.O. to be maintained in the stream = 4.5 mg/l
Max. permissible saturation deficit
D$_{c}$ = 9.17 – 4.5 = 4.67 mg/l
From equation given below,
${ \left( \cfrac { L }{ { D }_{ c }f } \right) }^{ f-1 }=f\left[ 1-(f-1)\cfrac { { D }_{ \circ } }{ L } \right] $
D$_{\circ}$ = 2.57 mg/l $\hspace{20mm}$ D$_{c}$ = 4.67 mg/l
${ f=\cfrac { { K }_{ R } }{ { K }_{ D } } }=\cfrac { 0.3 }{ 0.1 } =3$
we get, ${ \left( \cfrac { L }{ 4.67\times 3 } \right) }^{ 3-1 }=3\left[ 1-(3-1)\times \cfrac { 2.57 }{ L } \right] $
$L$=21.1 mg/l
${ Y }_{ l }=L[1-{ 10 }^{ -{ k }_{ D }l }]=21.1(1-{ 10 }^{ -0.1\times 5 })=14.43mg/l$
Now, $BOD_{mix}$
$14.43=\cfrac { { C }_{ 5 }\times 1600+1\times 1600 }{ 1600+6000 } $
$C_{5}$ = 64.8 mg/l
Degree of treatment required (%) = $ \cfrac { Original\quad B.O.D.-Permissible\quad B.O.D. }{ Original\quad B.O.D. } \times 100=\cfrac { 200-64.8 }{ 200 } \times 100$ = 67.6%