written 6.0 years ago by | • modified 6.0 years ago |
Subject : Signals & Systems
Topic : Fourier Series.
Difficulty: Medium
written 6.0 years ago by | • modified 6.0 years ago |
Subject : Signals & Systems
Topic : Fourier Series.
Difficulty: Medium
written 6.0 years ago by | • modified 6.0 years ago |
From the figure,
Period of the signal x(t) = T x(t)= \begin{cases} A, & \text{0<x<t 2}="" \[2ex]="" -a,="" &="" \text{t="" 2<x<t}="" \end{cases}<="" p="">
The trigonometric Fourier series equation is given by
$x(t) = a(0) + \sum_{k=1}^∞ a(k) cos(kω_O t)\ +\sum_{k=1}^∞ b(k) sin(kω_O t)\ $
$where a(0) = 1T\int_{\ltT\gt} x(t) \, dt$
$a(k) = 2T\int_{\ltT\gt} x(t) cos(kω_O t) \, dt$
$b(k) = 2T\int_{\ltT\gt} x(t) sin(kω_O t) \, dt$
Step 1: To calculate a(0) $a(0) = 1T\int_{\ltT\gt} x(t) \, dt$
$\ a(0) = 1T[\int_0^{T/2} A \, dt + \int_{T/2}^{T} -A \, dt]$
$\ a(0) = AT[\int_0^{T/2} \, dt + \int_{T/2}^{T} \, dt]$
$=\frac{A}{T} [\frac{T}{2} - T + \frac{T}{2}]$
∴a(0) = 0 ----------- 1
Step 2: To calculate a(k)
$a(k) = 2T\int_{\ltT\gt} x(t) cos(kω_O t) \, dt$
$a(k) = 2T\int_0^T x(t) cos(kω_O t) \, dt$
$ = 2T\int_0^T x(t) cos(kω_O t) \,dt - \int_{T/2}^T A cos(kω_O t) \, dt$
Here ω_O= 2π/T
$∴a(k) = 2T\int_0^{T/2} x(t) cos(k 2π/T t) \,dt - \int_{T/2}^T A cos(k 2π/T t) \, dt$
$ = 2T\int_0^{T/2} A cos(k 2π/T t) \,dt - \int_{T/2}^T A cos(k 2π/T t) \, dt$
$ = 2T\int_0^{T/2} cos(k 2π/T t) \,dt - \int_{T/2}^T cos(k 2π/T t) \, dt$