written 6.0 years ago by | • modified 6.0 years ago |
Mumbai University > EXTC > Sem 4 > Signals and Systems
Marks : 10M
Year : DEC 2015
written 6.0 years ago by | • modified 6.0 years ago |
Mumbai University > EXTC > Sem 4 > Signals and Systems
Marks : 10M
Year : DEC 2015
written 6.0 years ago by | • modified 6.0 years ago |
Given: x[n] = $\frac{1}{3}^n$ u[n]
h[n] = $\frac{1}{2}^n$ u[n]
Therefore, y[n] = x[n]*h[n] ------------ 1
y[n] = $\sum_{ k = - {\infty}}^{\infty}$ x[k] h[n-k] -------------- 2
Consider the first term i.e. x[k]
Since x[n] = $\frac{1}{3}^n$ u[n], x[k] = $\frac{1}{3}^k$ u[k]
u[k] = 0 for k < 0.
Hence, x[k] = $\frac{1}{3}^k$ u[k] for k ≥ 0 -----------3
Consider the second term in convolution of equation 2 i.e. h[n -k].
It is given that h[n] = $\frac{1}{2}^n$ u[n]
Hence h[n - k] = $\frac{1}{2}^{n-k}$ u[n-k]
u[n - k] = 0 for n < k.
Hence, h[n - k] = $\frac{1}{2}^{n-k}$ u[n-k] for n ≥ k ------------ 4
Putting the values of equation 3 and equation 4 in equation 2, we get
y[n] = $\sum_{ k = - {\infty}}^{\infty} \frac{1}{3}^{k} u[k] \frac{1}{2}^{n-k} u[n-k] $ ------------- 5
Since k ≥ 0, the lower limit of summation in above equation will be k = 0.
From equation 4, n ≥ k always
Hence upper limit of summation in above equation will be k = n.
y[n] = $\sum_{k = 0}^{n} (\frac{1}{3})^{k} (\frac{1}{2})^{n-k}$
u[k] and u[n - k] will be 1 within the limits k = 0 to k = n
y[n] = $\sum_{k = 0}^{n} (\frac{1}{3})^{k} (\frac{1}{2})^{n} (\frac{1}{2})^{-k}$
= $(\frac{1}{2})^{n} \sum_{k = 0}^{n} (\frac{1}{3})^{k} (\frac{1}{2})^{-k}$
= $(\frac{1}{2})^{n} \sum_{k = 0}^{n} (\frac{1}{3^k}) (\frac{1}{2^{-k}})$
= $(\frac{1}{2})^{n} \sum_{k = 0}^{n} (\frac{1}{3^k}) {2^{k}}$
= $(\frac{1}{2})^{n} \sum_{k = 0}^{n} (\frac{2}{3})^k $
Using the formula,
$ \sum_{k = 0}^{N} a^k = (\frac{1 - a^{N-1}}{1-a}) $
$y[n] = (\frac{1}{2})^n [\frac{1- (\frac{2}{3})^{n+1}}{1- \frac{2}{3}}]$
$y[n] = 3 (\frac{1}{2})^n [1- (\frac{2}{3})^{n+1}]$