written 8.5 years ago by | • modified 4.7 years ago |
written 8.5 years ago by |
$1. p=3, q=11, e=7, M=12$
i. To generate key pair, given two large primes $P = 3 and Q = 11$.
ii. Calculate modulus $N = P x Q = 3 x 11 = 33 and (P — l) x (Q — 1) = 20$.
iii. Given $E = 7$ which is not a factor of $Φ(N)$
iv. Select Decryption Key D:
$(D x E) mod (P-1) x (Q-1) =1$
$D= \frac{(1+K Φ(N))}{E} For K = 1, 2, 3, ….$
$D= \frac{(1+1(20))}{7}$
$D= \frac{21}{7}$
$D = 3$
v. For encryption: $C = ME mod N$
plaintext $M = 12$,
$C = 127 mod 33$
$C = 12$
vi. Send ciphertext $C = 12$ to the receiver.
vii. For decryption: $M = CD mod N$
$M = 123 mod 33$
$M = 12$ which is original text.
$2. p=7, q=11, e=17, M=25$
i. To generate key pair, given two large primes $P = 7 and Q = 11$.
ii. Calculate modulus $N = P x Q = 7 x 11 = 77$
$Φ(N) = (P — l) x (Q — 1) = 60$.
iii. Given $E = 17$ which is not a factor of $Φ(N)$
iv. Select Decryption Key D:
$(D x E) mod (P-1) x (Q-1) =1$
$D= \frac{(1+K Φ(N))}{E} For K = 1, 2, 3, ….$
$D= \frac{1+1(60)}{17} = \frac{61}{17} = 3.94 for K = 1$ Not acceptable
$D= \frac{1+2(60)}{17} = \frac{121}{17} = 7.11 for K = 2$ Not acceptable
$D= \frac{1+15(60)}{17} = \frac{901}{17} for K = 15$
$D= 53$
v. For encryption: $C = M^E mod N$
plaintext $M = 25$,
$C = 25^{17} mod 77$
$C = 9$
vi. Send ciphertext $C = 9$ to the receiver.
vii. For decryption: $M = C^D mod N$
$M = 9^{53} mod 77$
$M = 25$ which is original text.